Skip to main content

Privacy Preserving and Communication Efficient Information Enhancement for Imbalanced Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13413))

Included in the following conference series:

Abstract

Deep learning methods, especially convolutional neural networks, have become more and more popular in medical image classifications. However, training a deep neural network from scratch can be a luxury for many medical image datasets as the process requires a large and well-balanced sample to output satisfactory results. Unlike natural image datasets, medical images are expensive to collect owing to labor and equipment costs. Besides, the class labels in medical image datasets are usually severely imbalanced subject to the availability of patients. Further, aggregating medical images from multiple sources can be challenging due to policy restrictions, privacy concerns, communication costs, and data heterogeneity caused by equipment differences and labeling discrepancies. In this paper, we propose to address these issues with the help of transfer learning and artificial samples created by generative models. Instead of requesting medical images from source data, our method only needs a parsimonious supplement of model parameters pre-trained on the source data. The proposed method preserves the data privacy in the source data and significantly reduces the communication cost. Our study shows transfer learning together with artificial samples can improve the pneumonia classification accuracy on a small but heavily imbalanced chest X-ray image dataset by \(11.53\%\) which performs even better than directly augmenting that source data into the training process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://data.mendeley.com/datasets/rscbjbr9sj/2.

  2. 2.

    Available at https://nihcc.app.box.com/v/ChestXray-NIHCC.

References

  1. Albahli, S., Rauf, H.T., Arif, M., Nafis, M.T., Algosaibi, A.: Identification of thoracic diseases by exploiting deep neural networks. Neural Netw. 5, 6 (2021)

    Google Scholar 

  2. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks (2017)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)

    Google Scholar 

  4. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of transferability for a generic convnet representation. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1790–1802 (2015)

    Article  Google Scholar 

  5. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  6. Cai, T.T., Wei, H.: Transfer learning for nonparametric classification: minimax rate and adaptive classifier. Ann. Statist. 49(1), 100–128 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chowdhury, N.I., Smith, T.L., Chandra, R.K., Turner, J.H.: Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks. In: International forum of Allergy & Rhinology, vol. 9, pp. 46–52. Wiley Online Library (2019)

    Google Scholar 

  8. Gao, J., Jiang, Q., Zhou, B., Chen, D.: Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: an overview. Math. Biosci. Eng. 16(6), 6536–6561 (2019)

    Article  MathSciNet  Google Scholar 

  9. Giger, M.L., Suzuki, K.: Computer-aided diagnosis. In: Biomedical Information Technology, pp. 359-XXII. Elsevier (2008)

    Google Scholar 

  10. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs (2017)

    Google Scholar 

  12. Halalli, B., Makandar, A.: Computer aided diagnosis-medical image analysis techniques. In: Breast Imaging, p. 85 (2018)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  14. Hosny, K.M., Kassem, M.A., Foaud, M.M.: Classification of skin lesions using transfer learning and augmentation with Alex-net. PLOS ONE 14(5), e0217293 (2019)

    Article  Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  16. Kermany, D.S., Zhang, K., Goldbaum, M.H.: Labeled optical coherence tomography (OCT) and chest x-ray images for classification (2018)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2017)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems. Curran Associates, Inc. (2012)

    Google Scholar 

  21. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  22. Lee, K.S., Jung, S.K., Ryu, J.J., Shin, S.W., Choi, J.: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. J. Clin. Med. 9(2), 392 (2020)

    Article  Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  24. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML), vol. 13, pp. 97–105 (2015)

    Google Scholar 

  25. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144 (2016)

    Google Scholar 

  26. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  27. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)

    Google Scholar 

  28. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015)

    Google Scholar 

  29. Maity, S., Sun, Y., Banerjee, M.: Minimax optimal approaches to the label shift problem. arXiv preprint arXiv:2003.10443 (2020)

  30. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  31. Mao, J., Jain, A.K.: Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Netw. 6(2), 296–317 (1995)

    Article  Google Scholar 

  32. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014)

    Google Scholar 

  33. Mou, L., et al.: How transferable are neural networks in NLP applications? arXiv preprint arXiv:1603.06111 (2016)

  34. Qin, X., Bui, F.M., Nguyen, H.H.: Learning from an imbalanced and limited dataset and an application to medical imaging. In: 2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp. 1–6. IEEE (2019)

    Google Scholar 

  35. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2016)

    Google Scholar 

  36. Rocher, L., Hendrickx, J.M., De Montjoye, Y.A.: Estimating the success of re-identifications in incomplete datasets using generative models. Nat. Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  37. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  38. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  39. Sharma, H., Jain, J.S., Bansal, P., Gupta, S.: Feature extraction and classification of chest x-ray images using CNN to detect pneumonia. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 227–231. IEEE (2020)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  41. Stephen, O., Sain, M., Maduh, U.J., Jeong, D.U.: An efficient deep learning approach to pneumonia classification in healthcare. J. Healthcare Eng. 2019 (2019)

    Google Scholar 

  42. Stoitsis, J., et al.: Computer aided diagnosis based on medical image processing and artificial intelligence methods. Nuclear Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 569(2), 591–595 (2006)

    Article  Google Scholar 

  43. Tian, Y., Feng, Y.: Transfer learning under high-dimensional generalized linear models. arXiv preprint arXiv:2105.14328 (2021)

  44. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  45. White, T., Blok, E., Calhoun, V.D.: Data sharing and privacy issues in neuroimaging research: opportunities, obstacles, challenges, and monsters under the bed. Human Brain Map. 43(1), 278–291 (2022)

    Article  Google Scholar 

  46. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in neural information processing systems (NIPS), pp. 3320–3328 (2014)

    Google Scholar 

  47. Zhang, C., et al.: A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging. J. Neurosci. Methods 325, 108318 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Ke, Y. (2022). Privacy Preserving and Communication Efficient Information Enhancement for Imbalanced Medical Image Classification. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics