Skip to main content

Low-Effort Re-identification Techniques Based on Medical Imagery Threaten Patient Privacy

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Abstract

Deriving patients’ identity from medical imagery threatens privacy, as these data are acquired to support diagnosis but not to reveal identity-related features. Still, for many medical imaging modalities, such identity breaches have been reported, however, typically employing a highly specialised image processing and pattern recognition pipeline. In this paper, we demonstrate that surprisingly, a simple and unified deep learning-based technique is able to determine patient identity from two exemplary imaging modalities, i.e., brain MRI and gastrointestinal endoscopic data. This demonstrates that almost anyone with limited resources and knowledge of the field would be able to perform this task, which indicates that according to GDPR, medical image data after pseudonymisation should be considered “information on an identifiable natural person” and thus must not be released to the public without further provisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This figure has been designed using resources from [21].

  2. 2.

    This figure has been designed using resources from [19].

  3. 3.

    This figure has been designed using resources from [21].

References

  1. Alaslani, M., Elrefaei, L.A.: Transfer learning with convolutional neural networks for iris recognition. Int. J. Artif. Intell. Appl 10(5), 47–64 (2019)

    Google Scholar 

  2. Alshazly, H., Linse, C., Barth, E., Martinetz, T.: Ensembles of deep learning models and transfer learning for ear recognition. Sensors 19(19), 4139 (2019)

    Article  Google Scholar 

  3. Alshazly, H., Linse, C., Barth, E., Martinetz, T.: Handcrafted versus CNN features for ear recognition. Symmetry 11(12), 1493 (2019)

    Article  Google Scholar 

  4. Bae, H., Jung, D., Choi, H.S., Yoon, S.: Anomigan: generative adversarial networks for anonymizing private medical data. In: Pacific Symposium on Biocomputing 2020, pp. 563–574. World Scientific (2019)

    Google Scholar 

  5. Cho, H., Zin, T.T., Shinkawa, N., Nishii, R.: Post-mortem human identification using chest x-ray and CT scan images. Int. J. Biomed. Soft Comput. Hum. Sci. Official J. Biomed. Fuzzy Syst. Assoc. 23(2), 51–57 (2018)

    Google Scholar 

  6. Das, A., Pal, U., Blumenstein, M., Ballester, M.A.F.: Sclera recognition-a survey. In: 2013 2nd IAPR Asian Conference on Pattern Recognition, pp. 917–921. IEEE (2013)

    Google Scholar 

  7. Finck, M., Pallas, F.: They who must not be identified-distinguishing personal from non-personal data under the GDPR. Int. Data Privacy Law 10(1), 11–35 (2020)

    Article  Google Scholar 

  8. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  9. Fratini, A., Sansone, M., Bifulco, P., Cesarelli, M.: Individual identification via electrocardiogram analysis. Biomed. Eng. Online 14(1), 1–23 (2015)

    Article  Google Scholar 

  10. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  11. Heinrich, A., et al.: Forensic odontology: automatic identification of persons comparing antemortem and postmortem panoramic radiographs using computer vision. In: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. vol. 190, pp. 1152–1158. Georg Thieme Verlag KG (2018)

    Google Scholar 

  12. Ishigami, R., Zin, T.T., Shinkawa, N., Nishii, R.: Human identification using x-ray image matching. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists, vol. 1 (2017)

    Google Scholar 

  13. Kabbara, Y., Shahin, A., Nait-Ali, A., Khalil, M.: An automatic algorithm for human identification using hand x-ray images. In: 2013 2nd International Conference on Advances in Biomedical Engineering, pp. 167–170. IEEE (2013)

    Google Scholar 

  14. Kent, A.R., Elsing, S.H., Hebert, R.L.: Conjunctival vasculature in the assessment of anemia. Ophtalmology 7(2), 274–277 (2000)

    Article  Google Scholar 

  15. Kim, T., Yang, J.: Selective feature anonymization for privacy-preserving image data publishing. Electronics 9(5), 874 (2020)

    Article  Google Scholar 

  16. Köse, C., İki, C., et al.: A personal identification system using retinal vasculature in retinal fundus images. Expert Syst. Appl. 38(11), 13670–13681 (2011)

    Google Scholar 

  17. Kumar, K., Desrosiers, C., Siddiqi, K., Colliot, O., Toews, M.: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis. Neuroimage 158, 242–259 (2017)

    Article  Google Scholar 

  18. Kuzu, R.S., Maiorana, E., Campisi, P.: Vein-based biometric verification using transfer learning. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 403–409. IEEE (2020)

    Google Scholar 

  19. LaMontagne, P., et al.: Oasis-3: Longitudinal neuroimaging. Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. medRxiv (2019)

    Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  21. Leibetseder, A., Kletz, S., Schoeffmann, K., Keckstein, S., Keckstein, J.: GLENDA: gynecologic laparoscopy endometriosis dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 439–450. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_36

    Chapter  Google Scholar 

  22. Minaee, S., Abdolrashidi, A.: Deepiris: Iris recognition using a deep learning approach. arXiv preprint arXiv:1907.09380 (2019)

  23. Moccia, S., et al.: Learning-based classification of informative laryngoscopic frames. Comput. Methods Programs Biomed. 158, 21–30 (2018)

    Article  Google Scholar 

  24. Nguyen, K., Fookes, C., Ross, A., Sridharan, S.: Iris recognition with off-the-shelf CNN features: a deep learning perspective. IEEE Access 6, 18848–18855 (2017)

    Article  Google Scholar 

  25. Nomir, O., Abdel-Mottaleb, M.: Human identification from dental x-ray images based on the shape and appearance of the teeth. IEEE Trans. Inf. Forensics Secur. 2(2), 188–197 (2007)

    Article  Google Scholar 

  26. Papas, E.B.: Key factors in the subjective and objective assessment of conjunctival erythema. Invest. Ophthalmol. Vis. Sci. 41, 687–691 (2000)

    Google Scholar 

  27. Pogorelov, K., et al.: Nerthus: a bowel preparation quality video dataset. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 170–174 (2017)

    Google Scholar 

  28. Poulos, M., Rangoussi, M., Kafetzopoulos, E.: Person identification via the EEG using computational geometry algorithms. In: 9th European Signal Processing Conference (EUSIPCO 1998), pp. 1–4. IEEE (1998)

    Google Scholar 

  29. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  30. Shamir, L.: MRI-based knee image for personal identification. Int. J. Biometrics 5(2), 113–125 (2013)

    Article  Google Scholar 

  31. Shamir, L., Ling, S., Rahimi, S., Ferrucci, L., Goldberg, I.G.: Biometric identification using knee x-rays. Int. J. Biometrics 1(3), 365–370 (2009)

    Article  Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  33. Wachinger, C., et al.: Brainprint: a discriminative characterization of brain morphology. Neuroimage 109, 232–248 (2015)

    Article  Google Scholar 

  34. Weiner, M.W., et al.: The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s Dementia 6(3), 202–211 (2010)

    Article  Google Scholar 

  35. Wimmer, G., Uhl, A., Vecsei, A.: Evaluation of domain specific data augmentation techniques for the classification of celiac disease using endoscopic imagery. In: 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6 (2017). https://doi.org/10.1109/MMSP.2017.8122221

  36. Zhou, J., Abdel-Mottaleb, M.: A content-based system for human identification based on bitewing dental x-ray images. Pattern Recogn. 38(11), 2132–2142 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Carolina Martínez Esmeral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esmeral, L.C.M., Uhl, A. (2022). Low-Effort Re-identification Techniques Based on Medical Imagery Threaten Patient Privacy. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics