Skip to main content

A User Interface for Automatic Polyp Detection Based on Deep Learning with Extended Vision

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. To prevent CRC, the best method is screening colonoscopy. During this procedure, the examiner searches for colon polyps. Colon polyps are mucosal protrusions that protrude from the intestinal mucosa into the intestinal lumen. During the colonoscopy, all those polyps have to be found by the examiner. However, as the colon is folding and winding, polyps may hide behind folds or in uninvestigated areas and be missed by the examiner. Therefore, some publications suggest expanding the view of the examiner with multiple cameras. Nevertheless, expanding the examiner’s view with multiple cameras leads to overwhelming and cumbersome interventions. Therefore, we suggest maintaining the examiner’s classical endoscope view but extending the endoscope with side cameras. Those side camera views are only shown to an Artificial Intelligence (AI) trained for polyp detection. This AI system detects polyps on the side cameras and alarms the examiner if a polyp is found. Therefore, the examiner can easily move the main endoscope view on the AI detected area without being overwhelmed with too many camera images. In this study, we build a prototype of the endoscope with extended vision and test the automatic polyp detection system on gene-targeted pigs. Results show that our system outperforms current benchmarks and that the AI is able to find additional polyps that were not visualized with the main endoscope camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, S.B., Han, D.S., Bae, J.H., Byun, T.J., Kim, J.P., Eun, C.S.: The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 6, 64–70 (2012). https://doi.org/10.5009/gnl.2012.6.1.64

    Article  Google Scholar 

  2. Ali, S., et al.: Endoscopy disease detection and segmentation (edd2020) (2020). https://doi.org/10.21227/f8xg-wb80

  3. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics 43, 99–111, July 2015. https://doi.org/10.1016/j.compmedimag.2015.02.007

  4. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  6. Colucci, P.M., Yale, S.H., Rall, C.J.: Colorectal polyps. Clin. Med. Res. 1(3), 261–262 (2003)

    Article  Google Scholar 

  7. Fabrice Bellard, F.t.: Ffmpeg 4.4 (2000). http://www.ffmpeg.org/, [Online; Stand 25.03.2022]

  8. Favoriti, P., Carbone, G., Greco, M., Pirozzi, F., Pirozzi, R.E.M., Corcione, F.: Worldwide burden of colorectal cancer: a review. Updat. Surg. 68(1), 7–11 (2016). https://doi.org/10.1007/s13304-016-0359-y

    Article  Google Scholar 

  9. Flisikowska, T., et al.: A porcine model of familial adenomatous polyposis. Gastroenterology 143(5), 1173–1175 (2012)

    Article  Google Scholar 

  10. Gralnek, I.M., et al.: Standard forward-viewing colonoscopy versus full-spectrum endoscopy: an international, multicentre, randomised, tandem colonoscopy trial. Lancet Oncol. 15(3), 353–360 (2014)

    Article  Google Scholar 

  11. Hassan, C., et al.: Full-spectrum (fuse) versus standard forward-viewing colonoscopy in an organised colorectal cancer screening programme. Gut 66(11), 1949–1955 (2017)

    Google Scholar 

  12. Heresbach, D., et al.: Miss rate for colorectal neoplastic polyps: a prospective multicenter study of back-to-back video colonoscopies. Endoscopy 40(04), 284–290 (2008). https://doi.org/10.1055/s-2007-995618

  13. Inc, E.S.: Epiphan dvi2usb 3.0. https://www.epiphan.com/products/dvi2usb-3-0/tech-specs/, [Online; Stand 25.03.2022]

  14. Intel Corporation, Willow Garage, I.: Opencv (2000). https://opencv.org/, [Online; Stand 25.03.2022]

  15. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., Cheng, W.-H., Kim, J., Chu, W.-T., Cui, P., Choi, J.-W., Hu, M.-C., De Neve, W. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  16. Krenzer, A., et al.: Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists (2021)

    Google Scholar 

  17. Lambert, R.F.: Endoscopic classification review group. update on the Paris classification of superficial neoplastic lesions in the digestive tract. Endoscopy 37(6), 570–578 (2005)

    Google Scholar 

  18. Leufkens, A., van Oijen, M., Vleggaar, F., Siersema, P.: Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy 44(05), 470–475 (2012). https://doi.org/10.1055/s-0031-1291666

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Ltd, B.D.P.: Blackmagic - decklink mini recorder 4k. https://www.blackmagicdesign.com/pl/products/decklink/techspecs/W-DLK-33, [Online; Stand 25.03.2022]

  21. Misawa, M., et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointestinal Endoscopy 93(4), 960–967 (2021)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  24. Rex, D., et al.: Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 112(1), 24–28 (1997). https://doi.org/10.1016/s0016-5085(97)70214-2

  25. van Rijn, J.C., Reitsma, J.B., Stoker, J., Bossuyt, P.M., van Deventer, S.J., Dekker, E.: Polyp miss rate determined by tandem colonoscopy: a systematic review. Am. J. Gastroenterol. 101(2), 343–350 (2006). https://doi.org/10.1111/j.1572-0241.2006.00390.x

  26. Rogalla, S., et al.: Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis. Adv. Func. Mater. 29(51), 1904992 (2019)

    Article  Google Scholar 

  27. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)

    Article  Google Scholar 

  28. Triadafilopoulos, G., Li, J.: A pilot study to assess the safety and efficacy of the third eye retrograde auxiliary imaging system during colonoscopy. Endoscopy 40(06), 478–482 (2008)

    Article  Google Scholar 

  29. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthcare Eng. 2017, 1–9 (2017). https://doi.org/10.1155/2017/4037190

  30. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthcare Eng. 2017, 4037190 (2017). https://doi.org/10.1155/2017/4037190

    Article  Google Scholar 

  31. Wang, C.Y., Yeh, I.H., Liao, H.Y.M.: You only learn one representation: Unified network for multiple tasks. arXiv preprint arXiv:2105.04206 (2021)

  32. Yim, J.J., et al.: A protease-activated, near-infrared fluorescent probe for early endoscopic detection of premalignant gastrointestinal lesions. Proceedings of the National Academy of Sciences 118(1) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Krenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krenzer, A. et al. (2022). A User Interface for Automatic Polyp Detection Based on Deep Learning with Extended Vision. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics