Skip to main content

Supervised Learning Using Community Detection for Link Prediction

  • Conference paper
  • First Online:
Advances in Computing Systems and Applications (CSA 2022)

Abstract

Human networks in general, and social networks in particular, have been demonstrated to be highly structured and easily decomposable into communities. As a consequence, it appeared natural to us to consider this inherent trait of social networks in order to better the hidden link prediction problem’s resolution. In this paper, we propose a supervised learning algorithm that incorporates community information as a feature alongside other similarity metrics. The objective is to show that the information about the network’s community structure will enhance the accuracy of the hidden link prediction in social networks. We tested the F1-score accuracy of the proposed model with four classifiers: SVM with an “rbf” kernel, Naive Bayes, random forest and K-NN. Experimental results demonstrate that the inclusion of community information can only improve the quality of the hidden link prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis, Counter-Terrorism and Security (2006)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  4. Batagelj, V., Mrvar, A.: Pajek datasets (2006)

    Google Scholar 

  5. Beldi, Z., Bessedik, M.: A new brainstorming based algorithm for the community detection problem. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2958–2965. IEEE (2019)

    Google Scholar 

  6. Daud, N.N., Ab Hamid, S.H., Saadoon, M., Sahran, F., Anuar, N.B.: Applications of link prediction in social networks: a review. J. Netw. Comput. Appl. 166, 102716 (2020)

    Google Scholar 

  7. Ding, J., Jiao, L., Wu, J., Liu, F.: Prediction of missing links based on community relevance and ruler inference. Knowl. Based Syst. 98, 200–215 (2016)

    Article  Google Scholar 

  8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  9. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  10. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  MathSciNet  Google Scholar 

  11. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  12. Krebs, V.: A network of books about recent us politics sold by the online bookseller amazon.com. (2008). Unpublished http://www.orgnet.com

  13. Ma, H., Lu, Z., Li, D., Zhu, Y., Fan, L., Wu, W.: Mining hidden links in social networks to achieve equilibrium. Theor. Comput. Sci. 556, 13–24 (2014). combinatorial Optimization and Applications, https://doi.org/10.1016/j.tcs.2014.08.006, http://www.sciencedirect.com/science/article/pii/S0304397514006136

  14. Martínez, V., Galiano, F.B., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. 49, 69:1–69:33 (2016)

    Google Scholar 

  15. Mohan, A., Venkatesan, R., Pramod, K.: A scalable method for link prediction in large real world networks. J. Parallel Distrib. Comput. 109, 89–101 (2017)

    Article  Google Scholar 

  16. Navarro, E.: Métrologie des graphes de terrain, application à la construction de ressources lexicales et à la recherche d’information. Ph.D. thesis, Institut National Polytechnique de Toulouse-INPT (2013)

    Google Scholar 

  17. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104

  18. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    Google Scholar 

  19. Raut, P., Khandelwal, H., Vyas, G.: A comparative study of classification algorithms for link prediction. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 479–483. IEEE (2020)

    Google Scholar 

  20. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  21. Soundarajan, S., Hopcroft, J.: Using community information to improve the precision of link prediction methods. In: Proceedings of the 21st International Conference on World Wide Web, pp. 607–608 (2012)

    Google Scholar 

  22. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58, 1–38 (2014)

    Google Scholar 

  23. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977). https://doi.org/10.1086/jar.33.4.3629752

  24. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hassen Kerkache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kerkache, M.H., Sadeg-Belkacem, L., Benbouzid-Si Tayeb, F., Ali, A. (2022). Supervised Learning Using Community Detection for Link Prediction. In: Senouci, M.R., Boulahia, S.Y., Benatia, M.A. (eds) Advances in Computing Systems and Applications. CSA 2022. Lecture Notes in Networks and Systems, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-031-12097-8_8

Download citation

Publish with us

Policies and ethics