Skip to main content

Sentiment and Knowledge Based Algorithmic Trading with Deep Reinforcement Learning

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2022)

Abstract

Algorithmic trading, due to its inherent nature, is a difficult problem to tackle; there are too many variables involved in the real-world which makes it almost impossible to have reliable algorithms for automated stock trading. The lack of reliable labelled data that considers physical and physiological factors that dictate the ups and downs of the market, has hindered the supervised learning attempts for dependable predictions. To learn a good policy for trading, we formulate an approach using reinforcement learning which uses traditional time series stock price data and combines it with news headline sentiments, while leveraging knowledge graphs for exploiting news about implicit relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://wordnet.princeton.edu/.

  2. 2.

    https://www.nlm.nih.gov/research/umls/.

  3. 3.

    https://wiki.dbpedia.org/.

  4. 4.

    https://finance.yahoo.com/quote/MSFT/history/.

  5. 5.

    https://twitter.com/reuters.

  6. 6.

    https://developers.google.com/knowledge-graph/.

References

  1. Textblob. https://github.com/sloria/textblob

  2. Atsalakis, G.S., Valavanis, K.P.: Surveying stock market forecasting techniques - part ii: Soft computing methods. Expert Syst. Appl. 36(3), 5932–5941 (2009)

    Article  Google Scholar 

  3. Braun, H., Chandler, J.S.: Predicting stock market behavior through rule induction: an application of the learning-from-example approach*. Decis. Sci. 18(3), 415–429 (1987)

    Article  Google Scholar 

  4. Chen, K., Zhou, Y., Dai, F.: A lstm-based method for stock returns prediction: a case study of china stock market. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2823–2824 (2015)

    Google Scholar 

  5. Deng, Y., Bao, F., Kong, Y., Ren, Z., Dai, Q.: Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 653–664 (2017)

    Article  Google Scholar 

  6. Filos, A.: Reinforcement learning for portfolio management. GitHub repository (2018)

    Google Scholar 

  7. Fischer, T.G.: Reinforcement learning in financial markets- a survey working paper, FAU Discussion Papers in Economics, No. 12/2018, Institute for Economics, Erlangen (2018)

    Google Scholar 

  8. Fisher, K.L., Statman, M.: Investor sentiment and stock returns. Financ. Anal. J. 56(2), 16–23 (2000)

    Article  Google Scholar 

  9. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. Icwsm 7(21), 219–222 (2007)

    Google Scholar 

  10. Grek, T.: A blundering guide to making a deep actor-critic bot for stock trading. GitHub repository (2018)

    Google Scholar 

  11. IBM: Ibm watson. https://www.ibm.com/watson/services/tone-analyzer/

  12. Jain, S., Kain, M.: Rediction for stock marketing using machine learning. Int. J. Recent Innov. Trends Comput. Commun. 6(4), 131–135 (2018)

    Google Scholar 

  13. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MathSciNet  Google Scholar 

  14. Karazmodeh, M., Nasiri, S., Hashemi, S.M.: Stock price forecasting using support vector machines and improved particle swarm optimization. J. Autom. Control Eng. 1(2) (2013)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  16. Kohara, K., Ishikawa, T., Fukuhara, Y., Nakamura, Y.: Stock price prediction using prior knowledge and neural networks. Intell. Syst. Accounting Finance Manage. 6(1), 11–22 (1997)

    Article  Google Scholar 

  17. Littman, M.L.: A tutorial on partially observable Markov decision processes. J. Math. Psychol. 53(3), 119–125 (2009)

    Article  MathSciNet  Google Scholar 

  18. Loper, E., Bird, S.: NLTK: The Natural Language Toolkit (2002). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.585

  19. Maverick, J.: Investopedia. https://www.investopedia.com/ask/answers/010815/what-good-sharpe-ratio.asp

  20. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  21. Panigrahi, S., Mantri, J.: A text based decision tree model for stock market forecasting. In: 2015 International Conference on Green Computing and Internet of Things. IEEE (2015)

    Google Scholar 

  22. Sabherwal, S., Sarkar, S.K., Zhang, Y.: Do internet stock message boards influence trading? evidence from heavily discussed stocks with no fundamental news. J. Bus. Finance Accoun. 38(9–10), 1209–1237 (2011)

    Article  Google Scholar 

  23. Sharma, M.: Survey on stock market prediction and performance analysis. Int. J. Adv. Res. Comput. Eng. Technol. 3(1), 131–135 (2014)

    Google Scholar 

  24. Si, J., Mukherjee, A., Liu, B., Li, Q., Li, H., Deng, X.: Exploiting topic based twitter sentiment for stock prediction. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 24–29 (2013)

    Google Scholar 

  25. Sprenger, T.O., Tumasjan, A., Sandner, P.G., Welpe, I.M.: Tweets and trades: the information content of stock microblogs. Eur. Financ. Manag. 20(5), 926–957 (2014)

    Article  Google Scholar 

  26. Sutton, R.S., Barto, A.G., et al.: Introduction to reinforcement learning, vol. 135. MIT press Cambridge (1998)

    Google Scholar 

  27. Tan, Z., Quek, C., Cheng, P.Y.: Stock trading with cycles: a financial application of anfis and reinforcement learning. Expert Syst. Appl. 38(5), 4741–4755 (2011)

    Article  Google Scholar 

  28. Taran, C., Roy, D., Srinivasan, N.: Stock price prediction - a novel survey. Int. J. Appl. Eng. Res. 10(4), 11375–11383 (2015)

    Google Scholar 

  29. Taspinar, A.: Twitterscraper. https://github.com/taspinar/twitterscraper

  30. Yaddolahi, A., Shahraki, A.G., Zaiane, O.R.: Current state of text sentiment analysis from opinion to emotion mining. ACM Comput. Surv. 50(2), 1–33 (2017)

    Article  Google Scholar 

  31. Åström, K.: Optimal control of Markov processes with incomplete state information. J. Math. Anal. Appl. 10(1), 174–205 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). Osmar Zaïane is supported by the Amii Fellow Program and the Canada CIFAR AI Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osmar R. Zaiane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nan, A., Perumal, A., Zaiane, O.R. (2022). Sentiment and Knowledge Based Algorithmic Trading with Deep Reinforcement Learning. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12423-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12422-8

  • Online ISBN: 978-3-031-12423-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics