Abstract
It is a well-established fact in the retail industry that the placement of products on the shelves of the retail store has a significant impact on the revenue of the retailer. Given that customers tend to purchase sets of items together (i.e., itemsets) instead of individual items, it becomes a necessity to strategically place itemsets on the shelves of the retail store for improving retailer revenue. Furthermore, in practice, customers belong to different market segments based on factors such as purchasing power, demographics and customer behaviour. Existing research efforts do not address the issue of market segmentation w.r.t. itemset placement in retail stores. Consequently, they fail to efficiently index, retrieve and place high-utility itemsets in the retail slots in a market segmentation aware manner. In this work, we introduce the problem of market segmentation aware itemset placement for retail stores. Moreover, we propose a market segmentation aware retail itemset placement framework, which takes high-utility itemsets as input. Our performance evaluation with two real datasets demonstrates that our proposed framework is indeed effective in improving retailer revenue w.r.t. existing schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
SPMF: A Java open-source data mining library. http://www.philippe-fournier-viger.com/spmf/datasets. Accessed 1 Jun 2022
Largest malls in the world (2020). https://www.touropia.com/largest-malls-in-the-world/. Accessed 1 Jun 2022
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the VLDB, vol. 1215, pp. 487–499 (1994)
Ahn, K.I.: Effective product assignment based on association rule mining in retail. Exp. Syst. Appl. 39, 12551–12556 (2012)
Appel, D.L.: Market segmentation - a response to retail innovation. J. Mark. 34(2), 64–67 (1970)
Beane, T., Ennis, D.: Market segmentation: a review. Eur. J. Mark. 21(5), 20–42 (1987)
Chaudhary, P., Mondal, A., Reddy, P.K.: A flexible and efficient indexing scheme for placement of top-utility itemsets for different slot sizes. In: Reddy, P.K., Sureka, A., Chakravarthy, S., Bhalla, S. (eds.) BDA 2017. LNCS, vol. 10721, pp. 257–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72413-3_18
Chaudhary, P., Mondal, A., Reddy, P.K.: An efficient premiumness and utility-based itemset placement scheme for retail stores. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706, pp. 287–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27615-7_22
Chaudhary, P., Mondal, A., Reddy, P.K.: An improved scheme for determining top-revenue itemsets for placement in retail businesses. Int. J. Data Sci. Anal. 10, 359–375 (2020)
Chen, M., Lin, C.: A data mining approach to product assortment and shelf space allocation. Exp. Syst. Appl. 32, 976–986 (2007)
Claycamp, H.J., Massy, W.F.: A theory of market segmentation. J. Mark. Res. 5(4), 388–394 (1968)
Dibb, S.: Market segmentation: strategies for success. Mark. Intell. Plan. 16(7), 394–406 (1998)
Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S., Faghihi, U.: Mining minimal high-utility itemsets. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 88–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44403-1_6
Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD, vol. 29, pp. 1–12. ACM (2000)
Hansen, P., Heinsbroek, H.: Product selection and space allocation in supermarkets. Eur. J. Oper. Res. 3, 474–484 (1979)
Iniesta, M.A., Sánchez, M.: Retail-consumer commitment and market segmentation. Int. Rev. Retail Distrib. Consum. Res. 12(3), 261–279 (2002)
Lee, J., Yun, U., Lee, G., Yoon, E.: Efficient incremental high utility pattern mining based on pre-large concept. Eng. Appl. Artif. Intell. 72, 111–123 (2018)
Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the CIKM, pp. 55–64. ACM (2012)
Makgosa, R., Sangodoyin, O.: Retail market segmentation: the use of consumer decision-making styles, overall satisfaction and demographics. Int. Rev. Retail Distrib. Consum. Res. 28(1), 64–91 (2018)
Mittal, R., Mondal, A., Chaudhary, P., Reddy, P.K.: An urgency-aware and revenue-based itemset placement framework for retail stores. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2021. LNCS, vol. 12924, pp. 51–57. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86475-0_5
Mondal, A., Mittal, R., Chaudhary, P., Reddy, P.K.: A framework for itemset placement with diversification for retail businesses. Appl. Intell., 1–19 (2022). https://doi.org/10.1007/s10489-022-03250-8
Mondal, A., Mittal, R., Khandelwal, V., Chaudhary, P., Reddy, P.K.: PEAR: a product expiry-aware and revenue-conscious itemset placement scheme. In: Proceedings of the DSAA. IEEE (2021)
Mondal, A., Saurabh, S., Chaudhary, P., Mittal, R., Reddy, P.K.: A retail itemset placement framework based on premiumness of slots and utility mining. IEEE Access 9, 155207–155223 (2021)
Nguyen, L.T., et al.: An efficient method for mining high utility closed itemsets. Inf. Sci. 495, 78–99 (2019)
Chaudhary, P., Mondal, A., Reddy, P.K.: A diversification-aware itemset placement framework for long-term sustainability of retail businesses. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11029, pp. 103–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98809-2_7
Segal, M., Giacobbe, R.: Market segmentation and competitive analysis for supermarket retailing. Int. J. Retail Distrib. Manage. 22(1), 38–48 (1994)
Truong, T., Duong, H., Le, B., Fournier-Viger, P., Yun, U.: Efficient high average-utility itemset mining using novel vertical weak upper-bounds. Knowl. Based Syst. 183, 104847 (2019)
Tseng, V.S., Wu, C., Fournier-Viger, P., Philip, S.Y.: Efficient algorithms for mining the concise and lossless representation of high utility itemsets. IEEE Trans. Knowl. Data Eng. 27, 726–739 (2015)
Tseng, V.S., Wu, C., Shie, B., Yu, P.S.: UP-growth: an efficient algorithm for high utility itemset mining. In: Proceedings of the ACM SIGKDD, pp. 253–262. ACM (2010)
Tynan, A.C., Drayton, J.: Market segmentation. J. Mark. Manag. 2(3), 301–335 (1987)
Vo, B., Nguyen, L.T., Nguyen, T.D., Fournier-Viger, P., Yun, U.: A multi-core approach to efficiently mining high-utility itemsets in dynamic profit databases. IEEE Access 8, 85890–85899 (2020)
Wu, J.M.T., Teng, Q., Lin, J.C.W., Yun, U., Chen, H.C.: Updating high average-utility itemsets with pre-large concept. J. Intell. Fuzzy Syst. 38, 5831–5840 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mittal, R., Mondal, A., Reddy, P.K. (2022). A Market Segmentation Aware Retail Itemset Placement Framework. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-12423-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12422-8
Online ISBN: 978-3-031-12423-5
eBook Packages: Computer ScienceComputer Science (R0)