Skip to main content

A Market Segmentation Aware Retail Itemset Placement Framework

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13426))

Included in the following conference series:

Abstract

It is a well-established fact in the retail industry that the placement of products on the shelves of the retail store has a significant impact on the revenue of the retailer. Given that customers tend to purchase sets of items together (i.e., itemsets) instead of individual items, it becomes a necessity to strategically place itemsets on the shelves of the retail store for improving retailer revenue. Furthermore, in practice, customers belong to different market segments based on factors such as purchasing power, demographics and customer behaviour. Existing research efforts do not address the issue of market segmentation w.r.t. itemset placement in retail stores. Consequently, they fail to efficiently index, retrieve and place high-utility itemsets in the retail slots in a market segmentation aware manner. In this work, we introduce the problem of market segmentation aware itemset placement for retail stores. Moreover, we propose a market segmentation aware retail itemset placement framework, which takes high-utility itemsets as input. Our performance evaluation with two real datasets demonstrates that our proposed framework is indeed effective in improving retailer revenue w.r.t. existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. SPMF: A Java open-source data mining library. http://www.philippe-fournier-viger.com/spmf/datasets. Accessed 1 Jun 2022

  2. Largest malls in the world (2020). https://www.touropia.com/largest-malls-in-the-world/. Accessed 1 Jun 2022

  3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  4. Ahn, K.I.: Effective product assignment based on association rule mining in retail. Exp. Syst. Appl. 39, 12551–12556 (2012)

    Article  Google Scholar 

  5. Appel, D.L.: Market segmentation - a response to retail innovation. J. Mark. 34(2), 64–67 (1970)

    Google Scholar 

  6. Beane, T., Ennis, D.: Market segmentation: a review. Eur. J. Mark. 21(5), 20–42 (1987)

    Article  Google Scholar 

  7. Chaudhary, P., Mondal, A., Reddy, P.K.: A flexible and efficient indexing scheme for placement of top-utility itemsets for different slot sizes. In: Reddy, P.K., Sureka, A., Chakravarthy, S., Bhalla, S. (eds.) BDA 2017. LNCS, vol. 10721, pp. 257–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72413-3_18

    Chapter  Google Scholar 

  8. Chaudhary, P., Mondal, A., Reddy, P.K.: An efficient premiumness and utility-based itemset placement scheme for retail stores. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706, pp. 287–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27615-7_22

    Chapter  Google Scholar 

  9. Chaudhary, P., Mondal, A., Reddy, P.K.: An improved scheme for determining top-revenue itemsets for placement in retail businesses. Int. J. Data Sci. Anal. 10, 359–375 (2020)

    Article  Google Scholar 

  10. Chen, M., Lin, C.: A data mining approach to product assortment and shelf space allocation. Exp. Syst. Appl. 32, 976–986 (2007)

    Article  Google Scholar 

  11. Claycamp, H.J., Massy, W.F.: A theory of market segmentation. J. Mark. Res. 5(4), 388–394 (1968)

    Article  Google Scholar 

  12. Dibb, S.: Market segmentation: strategies for success. Mark. Intell. Plan. 16(7), 394–406 (1998)

    Article  Google Scholar 

  13. Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S., Faghihi, U.: Mining minimal high-utility itemsets. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 88–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44403-1_6

    Chapter  Google Scholar 

  14. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

    Chapter  Google Scholar 

  15. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD, vol. 29, pp. 1–12. ACM (2000)

    Google Scholar 

  16. Hansen, P., Heinsbroek, H.: Product selection and space allocation in supermarkets. Eur. J. Oper. Res. 3, 474–484 (1979)

    Article  Google Scholar 

  17. Iniesta, M.A., Sánchez, M.: Retail-consumer commitment and market segmentation. Int. Rev. Retail Distrib. Consum. Res. 12(3), 261–279 (2002)

    Google Scholar 

  18. Lee, J., Yun, U., Lee, G., Yoon, E.: Efficient incremental high utility pattern mining based on pre-large concept. Eng. Appl. Artif. Intell. 72, 111–123 (2018)

    Article  Google Scholar 

  19. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the CIKM, pp. 55–64. ACM (2012)

    Google Scholar 

  20. Makgosa, R., Sangodoyin, O.: Retail market segmentation: the use of consumer decision-making styles, overall satisfaction and demographics. Int. Rev. Retail Distrib. Consum. Res. 28(1), 64–91 (2018)

    Google Scholar 

  21. Mittal, R., Mondal, A., Chaudhary, P., Reddy, P.K.: An urgency-aware and revenue-based itemset placement framework for retail stores. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2021. LNCS, vol. 12924, pp. 51–57. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86475-0_5

    Chapter  Google Scholar 

  22. Mondal, A., Mittal, R., Chaudhary, P., Reddy, P.K.: A framework for itemset placement with diversification for retail businesses. Appl. Intell., 1–19 (2022). https://doi.org/10.1007/s10489-022-03250-8

  23. Mondal, A., Mittal, R., Khandelwal, V., Chaudhary, P., Reddy, P.K.: PEAR: a product expiry-aware and revenue-conscious itemset placement scheme. In: Proceedings of the DSAA. IEEE (2021)

    Google Scholar 

  24. Mondal, A., Saurabh, S., Chaudhary, P., Mittal, R., Reddy, P.K.: A retail itemset placement framework based on premiumness of slots and utility mining. IEEE Access 9, 155207–155223 (2021)

    Article  Google Scholar 

  25. Nguyen, L.T., et al.: An efficient method for mining high utility closed itemsets. Inf. Sci. 495, 78–99 (2019)

    Article  Google Scholar 

  26. Chaudhary, P., Mondal, A., Reddy, P.K.: A diversification-aware itemset placement framework for long-term sustainability of retail businesses. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11029, pp. 103–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98809-2_7

    Chapter  Google Scholar 

  27. Segal, M., Giacobbe, R.: Market segmentation and competitive analysis for supermarket retailing. Int. J. Retail Distrib. Manage. 22(1), 38–48 (1994)

    Article  Google Scholar 

  28. Truong, T., Duong, H., Le, B., Fournier-Viger, P., Yun, U.: Efficient high average-utility itemset mining using novel vertical weak upper-bounds. Knowl. Based Syst. 183, 104847 (2019)

    Article  Google Scholar 

  29. Tseng, V.S., Wu, C., Fournier-Viger, P., Philip, S.Y.: Efficient algorithms for mining the concise and lossless representation of high utility itemsets. IEEE Trans. Knowl. Data Eng. 27, 726–739 (2015)

    Article  Google Scholar 

  30. Tseng, V.S., Wu, C., Shie, B., Yu, P.S.: UP-growth: an efficient algorithm for high utility itemset mining. In: Proceedings of the ACM SIGKDD, pp. 253–262. ACM (2010)

    Google Scholar 

  31. Tynan, A.C., Drayton, J.: Market segmentation. J. Mark. Manag. 2(3), 301–335 (1987)

    Article  Google Scholar 

  32. Vo, B., Nguyen, L.T., Nguyen, T.D., Fournier-Viger, P., Yun, U.: A multi-core approach to efficiently mining high-utility itemsets in dynamic profit databases. IEEE Access 8, 85890–85899 (2020)

    Article  Google Scholar 

  33. Wu, J.M.T., Teng, Q., Lin, J.C.W., Yun, U., Chen, H.C.: Updating high average-utility itemsets with pre-large concept. J. Intell. Fuzzy Syst. 38, 5831–5840 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mittal, R., Mondal, A., Reddy, P.K. (2022). A Market Segmentation Aware Retail Itemset Placement Framework. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12423-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12422-8

  • Online ISBN: 978-3-031-12423-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics