Skip to main content

The Digitalization of Bioassays in the Open Research Knowledge Graph

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2022)

Abstract

Background: Recent years are seeing a growing impetus in the semantification of scholarly knowledge at the fine-grained level of scientific entities in knowledge graphs. The Open Research Knowledge Graph (ORKG, orkg.org) represents an important step in this direction, with thousands of scholarly contributions as structured, fine-grained, machine-readable data. There is a need, however, to engender change in traditional community practices of recording contributions as unstructured, non-machine-readable text. For this in turn, there is a strong need for AI tools designed for scientists that permit easy and accurate semantification of their scholarly contributions. We present one such tool, ORKG-assays. Implementation: ORKG-assays is a freely available AI micro-service in ORKG written in Python designed to assist scientists obtain semantified bioassays as a set of triples. It uses an AI-based clustering algorithm which on gold-standard evaluations over 900 bioassays with 5,514 unique property-value pairs for 103 predicates shows competitive performance. Results and Discussion: As a result, semantified assay collections can be surveyed on the ORKG platform via tabulation or chart-based visualizations of key property values of the chemicals and compounds offering smart knowledge access to biochemists and pharmaceutical researchers in the advancement of drug development.

Supported by TIB Leibniz Information Centre for Science and Technology, the EU H2020 ERC project ScienceGraph (GA ID: 819536) and the ITN PERICO (GA ID: 812968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anteghini, M., D’Souza, J., Dos Santos, V.A.M., Auer, S.: Scibert-based semantification of bioassays in the open research knowledge graph. In: EKAW-PD 2020, pp. 22–30 (2020)

    Google Scholar 

  2. Anteghini, M., D’Souza, J., Santos, V.A., Auer, S.: Easy semantification of bioassays (2021). arXiv preprint arXiv:2111.15182

  3. Auer, S., et al.: Improving access to scientific literature with knowledge graphs. Bibliothek Forschung und Praxis 44(3), 516–529 (2020)

    Article  Google Scholar 

  4. Beltagy, I., Lo, K., Cohan, A.: Scibert: A pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). pp. 3606–3611 (2019)

    Google Scholar 

  5. Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_17

    Chapter  Google Scholar 

  6. Dessì, D., Osborne, F., Reforgiato Recupero, D., Buscaldi, D., Motta, E., Sack, H.: AI-KG: an automatically generated knowledge graph of artificial intelligence. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 127–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_9

    Chapter  Google Scholar 

  7. D’Souza, J., Auer, S., Pedersen, T.: SemEval-2021 Task 11: NLPContributionGraph - structuring scholarly nlp contributions for a research knowledge graph. In: Proceedings of the 15th SemEval-2021, pp. 364–376. ACL, August 2021

    Google Scholar 

  8. Kim, S., et al.: Literature information in pubchem: associations between pubchem records and scientific articles. J. Cheminformatics 8(1), 1–15 (2016)

    Article  Google Scholar 

  9. Liu, H., Sarol, M.J., Kilicoglu, H.: UIUC_BioNLP at SemEval-2021 task 11: A cascade of neural models for structuring scholarly NLP contributions. In: Proceedings of the 15th SemEval-2021, pp. 377–386. ACL, August 2021

    Google Scholar 

  10. Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Proceedings of the 2018 EMNLP, pp. 3219–3232. ACL, October–November 2018

    Google Scholar 

  11. Oelen, A., Jaradeh, M.Y., Farfar, K.E., Stocker, M., Auer, S.: Comparing research contributions in a scholarly knowledge graph. In: CEUR Workshop Proceedings, vol. 2526, pp. 21–26. RWTH, Aachen (2019)

    Google Scholar 

  12. Wang, Y., et al.: Pubchem’s bioassay database. Nucleic Acids Res. 40(D1), D400–D412 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer D’Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Souza, J. et al. (2022). The Digitalization of Bioassays in the Open Research Knowledge Graph. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12423-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12422-8

  • Online ISBN: 978-3-031-12423-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics