Skip to main content

Effective and Robust Boundary-Based Outlier Detection Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13427))

Included in the following conference series:

Abstract

Outlier detection aims to identify samples that do not match the expected patterns or major distribution of the dataset. It has played an important role in many domains such as credit card fraud identification, network intrusion detection, medical image processing and so on. The inherent class imbalance in datasets is one of the major reasons why this problem is difficult to solve. The small number of outliers are not adequate to characterize their own overall distribution, which makes it difficult for classifiers to effectively learn the demarcation (boundary) between normal samples and outliers. To address this problem, we introduce an effective and robust Boundary-based Outlier Detection method using Generative Adversarial Networks (BOD-GAN). Here, we extract the border data containing normal samples and outliers, expand them to form the initial reference boundary outliers. With the min-max game between a generator and two discriminators in GAN, the boundary outliers are further augmented by BOD-GAN, which, together with the boundary normal data, provides the valuable demarcation information for classifier. However, the increase of the data dimension may bring some gaps in the initial boundary, which are difficult to effectively fill by the augmentation method alone. To address this, we innovatively add density-loss to the loss function of the generator to explore these boundary gaps, making our model rather robust even with the high dimensional data. The extensive experimental evaluation demonstrates that our proposed method has achieved significant improvements compared with existing classic and emerging (i.e., GAN-based) outlier detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeywickrama, T., Cheema, M.A., Taniar, D.: k-nearest neighbors on road networks: a journey in experimentation and in-memory implementation (2016)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  3. Averbuch-Elor, H., Bar, N., Cohen-Or, D.: Border-peeling clustering. IEEE Trans. Pattern Anal. Mach. Intell. 42(7), 1791–1797 (2019)

    Article  Google Scholar 

  4. Breiman, L.: Random forest. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: The 22nd ACM SIGKDD International Conference (2016)

    Google Scholar 

  7. Cheng, Z., Zou, C., Dong, J.: Outlier detection using isolation forest and local outlier factor. In: Proceedings of the Conference on Research in Adaptive and Convergent Systems, pp. 161–168 (2019)

    Google Scholar 

  8. Choi, H., Kim, M., Lee, G., Kim, W.: Unsupervised learning approach for network intrusion detection system using autoencoders. J. Supercomput. 75(9), 5597–5621 (2019). https://doi.org/10.1007/s11227-019-02805-w

    Article  Google Scholar 

  9. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3784–3797 (2017)

    Google Scholar 

  10. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. AAAI Press (1996)

    Google Scholar 

  11. Fiore, U., De Santis, A., Perla, F., Zanetti, P., Palmieri, F.: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf. Sci. 479, 448–455 (2019)

    Article  Google Scholar 

  12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  13. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  14. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  15. Kołcz, A., Chowdhury, A., Alspector, J.: Data duplication: an imbalance problem? (2003)

    Google Scholar 

  16. Kuypers, M.A., Maillart, T., Paté-Cornell, E.: An empirical analysis of cyber security incidents at a large organization. Department of Management Science and Engineering, Stanford University, School of Information, UC Berkeley 30 (2016)

    Google Scholar 

  17. Li, L., Huang, L., Yang, W., Yao, X., Liu, A.: Privacy-preserving LOF outlier detection. Knowl. Inf. Syst. 42(3), 579–597 (2015)

    Article  Google Scholar 

  18. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  19. Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., He, X.: Generative adversarial active learning for unsupervised outlier detection. IEEE Trans. Knowl. Data Eng. 32(8), 1517–1528 (2019)

    Google Scholar 

  20. Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.S., Zeineddine, H.: An experimental study with imbalanced classification approaches for credit card fraud detection. IEEE Access 7, 93010–93022 (2019)

    Article  Google Scholar 

  21. Ngo, P.C., Winarto, A.A., Kou, C.K.L., Park, S., Akram, F., Lee, H.K.: Fence GAN: towards better anomaly detection. In: 2019 IEEE 31St International Conference on tools with artificial intelligence (ICTAI), pp. 141–148. IEEE (2019)

    Google Scholar 

  22. Osada, G., Omote, K., Nishide, T.: Network intrusion detection based on semi-supervised variational auto-encoder. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 344–361. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_19

    Chapter  Google Scholar 

  23. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  24. Schlkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems 12, NIPS Conference, Denver, Colorado, USA, 29 November–4 December 1999 (1999)

    Google Scholar 

  25. Schulze, J.P., Sperl, P., Böttinger, K.: Double-adversarial activation anomaly detection: adversarial autoencoders are anomaly generators. arXiv preprint arXiv:2101.04645 (2021)

  26. Shen, H., Chen, J., Wang, R., Zhang, J.: Counterfeit anomaly using generative adversarial network for anomaly detection. IEEE Access 8, 133051–133062 (2020)

    Article  Google Scholar 

  27. Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M., Baesens, B.: APATE: a novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015)

    Article  Google Scholar 

  28. Zhang, X., He, Y., Jin, Y., Qin, H., Azhar, M., Huang, J.Z.: A robust k-means clustering algorithm based on observation point mechanism. Complexity 2020 (2020)

    Google Scholar 

  29. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the support from Natural Science Foundation of China (No. 62172372), Zhejiang Provincial Natural Science Foundation (No. LZ21F030001), Postdoctoral Fund of Hangzhou City (No. 119001-UB2102QJ) and Henan Center for Outstanding Overseas Scientists (GZS2022011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhou Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Q., Zhang, J., Bah, M.J., Li, H., Chang, L., Kiran, R.U. (2022). Effective and Robust Boundary-Based Outlier Detection Using Generative Adversarial Networks. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13427. Springer, Cham. https://doi.org/10.1007/978-3-031-12426-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12426-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12425-9

  • Online ISBN: 978-3-031-12426-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics