Abstract
This research article discusses the implementation aspects of a Deep Learning architecture based on U-Net for medical image segmentation. A base model of the U-Net architecture is extended and experimented. Unlike the existing model, the input images are enhanced by applying a Non-Local Means filter optimized using a metaheuristic Grey wolf optimization method. Further, the model parameters are modified to achieve better performance. Tests were performed using two benchmark B-mode Ultrasound image datasets of 200 Breast lesion images and 504 Skeletal images. Experimental results demonstrate that the modifications resulted in more accurate segmentation. The performance of the modified implementation is compared with the base model and a Bidirectional Convolutional LSTM architecture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee, W.L.: An ensemble-based data fusion approach for characterizing ultrasonic liver tissue. Applied Soft Computing 13(8), 3683–3692 (2013). https://doi.org/10.1016/j.asoc.2013.03.009
Kaltenbach, T.E.M., et al.: Prevalence of benign focal liver lesions: ultrasound investigation of 45,319 hospital patients. Abdominal Radiology 41(1), 25–32 (2016). https://doi.org/10.1007/s00261-015-0605-7
Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W.: The ImageJ ecosystem: an open platform for biomedical image analysis. Molecular Reproduction and Development 82(7–8), 518–529 (2015). https://doi.org/10.1002/mrd.22489
Yuan, J., Wang, J.: Active contour based on local statistic information and an attractive force for ultrasound image segmentation. In: Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017). Published (2017). https://doi.org/10.2991/msam-17.2017.23
Kumar, S.N., Lenin Fred, A., Muthukumar, S., Ajay Kumar, H., Sebastin Varghese, P.: A voyage on medical image segmentation algorithms. Biomedical Research (2018). https://doi.org/10.4066/biomedicalresearch.29-16-1785
Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geoscience and Remote Sensing 54(10), 6232–6251 (2016). https://doi.org/10.1109/tgrs.2016.2584107
Liu, S., et al.: Deep learning in medical ultrasound analysis: a review. Engineering 5(2), 261–275 (2019). https://doi.org/10.1016/j.eng.2018.11.020
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV) (2014). https://doi.org/10.1109/icarcv.2014.7064414
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1106–1114 (2012). papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutionalneural-networks.pdf.
Cao, Z., Duan, L., Yang, G., Yue, T., Chen, Q.: An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. BMC Medical Imaging, 19(1) (2019). https://doi.org/10.1186/s12880-019-0349-x
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science, 234–241 (2015b). https://doi.org/10.1007/978-3-319-24574-4_28
Litjens, G., et al.: A survey on deep learning in medical image analysis. Medical Image Analysis 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005
Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. Communications in Computer and Information Science, MIUA 2017 723, 506–517 (2017). https://doi.org/10.1007/978-3-319-60964-5_
Almajalid, R., Shan, J., Du, Y., Zhang, M.: Development of a deep-learning-based method for breast ultrasound image segmentation. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1103–1108 (2018). https://doi.org/10.1109/icmla.2018.00179
Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-Net with densley connected convolutions. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Published (2019). https://doi.org/10.1109/iccvw.2019.00052
Shi, T., Jiang, H., Zheng, B.: A stacked generalization U-shape network based on zoom strategy and its application in biomedical image segmentation. Comp. Methods and Programs in Biomedicine 197, 105678 (2020). https://doi.org/10.1016/j.cmpb.2020.105678
Du, G., Cao, X., Liang, J., Chen, X., Zhan, Y.: Medical image segmentation based on U-Net: a review. J. Imaging Sci. Technol 64(2), 1–12 (2020). 20508–1. https://doi.org/10.2352/j.imagingsci.technol.2020.64.2.020508
Khoong, W.H.: BUSU-Net: An Ensemble U-Net Framework for Medical Image Segmentation, Image and Video Processing (2020). e-print: 2003.01581, arXiv:2003.01581
Ardhianto, P., et al.: A review of the challenges in deep learning for skeletal and smooth muscle ultrasound images. Applied Sciences 11(9), 4021 (2021). https://doi.org/10.3390/app11094021
Shereena, V.B., Raju, G.: Modified non-local means model for speckle noise reduction in ultrasound images. In: Proceedings of 2nd Congress on Intelligent Systems, CIS 2021 (2021)
Cunningham, R., Sánchez, M., May, G., Loram, I.: Estimating full regional skeletal muscle fibre orientation from B-Mode ultrasound images using convolutional, residual, and deconvolutional neural networks. J. Imaging 4(2), 29 (2018). https://doi.org/10.3390/jimaging4020029
Piotrzkowska-Wróblewska, H., Dobruch-Sobczak, K., Byra, M., Nowicki, A.: Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Medical Physics 44(11), 6105–6109 (2017). https://doi.org/10.1002/mp.12538
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015). https://arxiv.org/abs/1412.6980
Wang, P., Chung, A.C.S.: Focal dice loss and image dilation for brain tumor segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Lecture Notes in Computer Science 11045, 119–127 (2018). https://doi.org/10.1007/978-3-030-00889-5_14
Abraham, N., Khan, N.M.: A novel focal tversky loss function with improved attention U-Net for Lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 683–687 (2019). https://doi.org/10.1109/isbi.2019.8759329
Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation. Encyclopedia of Database Systems, 532–538 (2009). https://doi.org/10.1007/978-0-387-39940-9_565
Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15(1), (2015). https://doi.org/10.1186/s12880-015-0068-x
Kumar, S.N., Lenin Fred, A., Ajay Kumar, H., Sebastin Varghese, P.: Performance metric evaluation of segmentation algorithms for gold standard medical images. Advances in Intelligent Systems and Computing, 457–469 (2018b). https://doi.org/10.1007/978-981-10-8633-5_45
Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-Score and ROC: a family of discriminant measures for performance evaluation. Lecture Notes in Computer Science, 1015–1021 (2006). https://doi.org/10.1007/11941439_114
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shereena, V.B., Raju, G. (2022). Medical Ultrasound Image Segmentation Using U-Net Architecture. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2022. Communications in Computer and Information Science, vol 1613. Springer, Cham. https://doi.org/10.1007/978-3-031-12638-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-12638-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12637-6
Online ISBN: 978-3-031-12638-3
eBook Packages: Computer ScienceComputer Science (R0)