Skip to main content

WE-Net: An Ensemble Deep Learning Model for Covid-19 Detection in Chest X-ray Images Using Segmentation and Classification

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1614))

Included in the following conference series:

  • 526 Accesses

Abstract

Amidst the increasing surge of Covid-19 infections worldwide, chest X-ray (CXR) imaging data have been found incredibly helpful for the fast screening of COVID-19 patients. This has been particularly helpful in resolving the overcapacity situation in the urgent care center and emergency department. An accurate Covid-19 detection algorithm can further aid this effort to reduce the disease burden. As part of this study, we put forward WE-Net, an ensemble deep learning (DL) framework for detecting pulmonary manifestations of COVID-19 from CXRs. We incorporated lung segmentation using U-Net to identify the thoracic Region of Interest (RoI), which was further utilized to train DL models to learn from relevant features. ImageNet based pre-trained DL models were fine-tuned, trained, and evaluated on the publicly available CXR collections. Ensemble methods like stacked generalization, voting, averaging, and the weighted average were used to combine predictions from best-performing models. The purpose of incorporating ensemble techniques is to overcome some of the challenges, such as generalization errors encountered due to noise and training on a small number of data sets. Experimental evaluations concluded on significant improvement in performance using the deep fusion neural network, i.e., the WE-Net model, which led to 99.02% accuracy and 0.989 area under the curve (AUC) in detecting COVID-19 from CXRs. The combined use of image segmentation, pre-trained DL models, and ensemble learning (EL) boosted the prediction results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Director-General’s opening remarks at the media briefing on COVID-19, 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed Jan 2022

  2. Teymouri, M., et al.: Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol. Res. Pract. 221, 153443 (2021). https://doi.org/10.1016/j.prp.2021.153443

    Article  Google Scholar 

  3. Gozes, O., et al.: Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning CT Image Analysis. arXiv abs/2003.05037 (2020)

    Google Scholar 

  4. Li, L., et al.: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology 296(2), E65–E71 (2020). https://doi.org/10.1148/radiol.2020200905

  5. Maghdid, H.S., et al.: Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. In: Proceedings of SPIE 11734, Multimodal Image Exploitation and Learning 2021, p. 117340E (2021). https://doi.org/10.1117/12.2588672

  6. Maghdid, H.S., Asaad, A., Ghafoor, K.Z., Sadiq, A.S., Khan, M.K.: Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. Defense + Commercial Sensing (2021)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. Kermany, D.S., Goldbaum, M., Cai, W., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131.e9 (2018). https://doi.org/10.1016/j.cell.2018.02.010

  9. Singh, D., Kumar, V., Vaishali, et al.: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. Eur. J. Clin. Microbiol. Infect Dis. 39, 1379–1389 (2020). https://doi.org/10.1007/s10096-020-03901-z

  10. Ng, M.Y., Lee, E.Y.P., Yang, J., et al.: Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol. Cardiothorac. Imaging 2(1), e200034 (2020). https://doi.org/10.1148/ryct.2020200034

  11. Huang, C., Wang, Y., Li, X., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020). https://doi.org/10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum. In: Lancet. 2020 Jan 30; PMID: 31986264; PMCID: PMC7159299

  12. Kundu, R., et al.: ET-NET: an ensemble of transfer learning models for prediction of COVID-19 infection through chest CT-scan images. Multimed. Tools Appl. 81, 31–50 (2022). https://doi.org/10.1007/s11042-021-11319-8

  13. Rajaraman, S., et al.: Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-rays (2020)

    Google Scholar 

  14. Quan, H., Xu, X., Zheng, T., Li, Z., Zhao, M., Cui, X.: DenseCapsNet: detection of COVID-19 from X-ray images using a capsule neural network. Comput. Biol. Med. 133, 104399 (2021). https://doi.org/10.1016/j.compbiomed.2021.104399

    Article  Google Scholar 

  15. Yahyatabar, M., Jouvet, P., Cheriet, F.: Dense-Unet: a light model for lung fields segmentation in Chest X-Ray images. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1242–1245 (2020). https://doi.org/10.1109/EMBC44109.2020.9176033. PMID: 33018212

  16. van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006). https://doi.org/10.1016/j.media.2005.02.002. PMID: 15919232

    Article  Google Scholar 

  17. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am. J. Roentgenol. 174(1), 71–74 (2000). https://doi.org/10.2214/ajr.174.1.1740071

  18. Jaeger, S., et al.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475–477 (2014). https://doi.org/10.3978/j.issn.2223-4292.2014.11.20

    Article  Google Scholar 

  19. Chowdhury, M.E.H., et al.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020). https://doi.org/10.1109/ACCESS.2020.3010287

    Article  Google Scholar 

  20. Rahman, T., Khandakar, A., Qiblawey, Y., et al.: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 132, 104319 (2021). https://doi.org/10.1016/j.compbiomed.2021.104319

    Article  Google Scholar 

  21. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW), pp. 117–122 (2018). https://doi.org/10.1109/IIPHDW.2018.8388338

  22. Yadav, G., Maheshwari, S., Agarwal, A.: Contrast limited adaptive histogram equalization based enhancement for real time video system. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2392–2397 (2014). https://doi.org/10.1109/ICACCI.2014.6968381

  23. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981). https://doi.org/10.1109/TASSP.1981.1163711

    Article  MathSciNet  MATH  Google Scholar 

  24. Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18(11), 1049–1075 (1999). https://doi.org/10.1109/42.816070

    Article  Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Best, N., Ott, J., Linstead, E.J.: Exploring the efficacy of transfer learning in mining image-based software artifacts. J. Big Data 7, 59 (2020). https://doi.org/10.1186/s40537-020-00335-4

    Article  Google Scholar 

  27. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  28. Tang, S., et al.: EDL-COVID: ensemble deep learning for COVID-19 case detection from chest X-ray images. IEEE Trans. Industr. Inf. 17(9), 6539–6549 (2021). https://doi.org/10.1109/TII.2021.3057683

    Article  Google Scholar 

  29. Das, A.K., Ghosh, S., Thunder, S., et al.: Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern. Anal. Applic. 24, 1111–1124 (2021). https://doi.org/10.1007/s10044-021-00970-4

    Article  Google Scholar 

  30. Frazão, X., Alexandre, L.A.: Weighted convolutional neural network ensemble. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 674–681. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12568-8_82

    Chapter  Google Scholar 

  31. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Nagpal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhuri, R., Nagpal, D., Azad, A., Pal, S. (2022). WE-Net: An Ensemble Deep Learning Model for Covid-19 Detection in Chest X-ray Images Using Segmentation and Classification. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2022. Communications in Computer and Information Science, vol 1614. Springer, Cham. https://doi.org/10.1007/978-3-031-12641-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12641-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12640-6

  • Online ISBN: 978-3-031-12641-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics