
OpBerg: Discovering causal sentences using optimal alignments

Justin Wooda, Nicholas J. Matiaszb, Alcino J. Silvac, William Hsub, Alexej Abyzovd, Wei Wanga,∗

aDepartment of Computer Science, UCLA, 3551 Boelter Hall, 580 Portola Plaza, Los Angeles, CA 90095
bDepartment of Bioengineering, UCLA, 924 Westwood Blvd., Ste. 420, Los Angeles, CA 90024

cDepartment of Neuroscience, UCLA, 695 Charles Young Dr. S., Rm. 2357, Los Angeles, CA 90095
dCenter for Individualized Medicine, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW Rochester, MN 55905

Abstract

Background: The biological literature is rich with sentences that describe causal relations. Methods that automatically

extract such sentences can help biologists to synthesize the literature and even discover latent relations that had not

been articulated explicitly. Current methods for extracting causal sentences are based on either machine learning or a

predefined database of causal terms. Machine learning approaches require a large set of labeled training data and can be

susceptible to noise. Methods based on predefined databases are limited by the quality of their curation and are unable

to capture new concepts or mistakes in the input.

Objectives: This paper presents a novel and outperforming method for extracting causal relations from text by aligning

the part-of-speech (POS) representations of an input set with that of known causal sentences.

Methods: This method extracts causal relations by adapting and improving a method designed for a seemingly unrelated

problem: finding alignments between genomic sequences. Each sentence for training and testing is converted to a

representation where each word is replaced by its corresponding POS token. Given a set of POS tokens labeled as

causal and non-causal, we take an unlabeled token sequence to be of the same class as its best aligning labeled match.

Paramount to this approach is finding the best number of alignments (breakpoints) along with the best alignment for

each breakpoint.

Results: The execution time of OpBerg is compared against the state-of-the art machine learning algorithms for the task

of causality extraction using a training set size of 100 sentences and a test size ranging from 1,000 to 10,000 sentences.

OpBerg is shown to run faster by a factor of 10 over the compared methods. Next OpBerg is compared against the same

methods in a causality retrieval task. The task is to correctly retrieve the causal statements from a set of research articles.

Again, OpBerg significantly outperforms the competing methods.

Conclusion: Our experiments show that when applied to the task of finding causal sentences in biological literature, our

method improves on the accuracy of other methods in a computationally efficient manner.

Keywords: Causality extraction, Natural language processing, AGE

1. Introduction

Researchers who perform biological experiments convey

their discovery in published research articles, which contain

descriptions of causal relations. This growing literature

provides an enormous amount of information and repre-

sents the current state of biological understanding. This

∗Corresponding author

Email address: weiwang@cs.ucla.edu (Wei Wang)

documentation of scientific discovery can verify previous ex-

periments, provide insights to researchers [1], and motivate

future research [2].

These corpora of biological text are growing at an expo-

nential rate. Algorithms and approaches are thus needed

to extract the relevant information, allowing biologists

to understand and connect biological processes. Since

researchers describe causal connections among biological

entities in free-text research papers, it is logical to extract

ar
X

iv
:1

90
4.

02
03

2v
1

 [
cs

.I
R

]
 3

 A
pr

 2
01

9

these connections using natural language processing (NLP).

A causal assertion can be thought of as a relation between

an agent and a target. Often in biological studies, an agent

is either passively observed or actively manipulated, and

a change or lack thereof is noted in a target. Although

this type of result can be described across many different

and sometimes nonadjacent sentences, this paper focuses

only on causal assertions appearing in a single sentence.

This approach has the advantage of limiting the search

range for descriptions of causality and takes advantage of

existing methods that can reliably fragment documents

into collections of sentences [3].

Existing methods for causality extraction use either

predefined knowledge bases, word lists, other types of

databases [4, 5, 6, 7, 8], or are based on statistical

techniques—often some form of machine learning [9, 10,

11, 12, 13, 14]. Predefined knowledge bases are of course

limited by the quality of the knowledge base itself. Often,

these sources are manually curated and do not always con-

tain all possible words or phrases of interest. Additionally,

they require exact matches to be useful. For instance, if

a knowledge base contains causal verbs and a potential

causal sentence contains the misspelled verb “cuases” (in-

stead of “causes”), the sentence will be dismissed due to

the misspelling. These predefined knowledge bases are also

not able to capture new words or concepts, and they are

not extensible to other tasks such as extracting causality

from text in other languages.

One solution to these problems is to use existing machine

learning techniques. But these approaches often require

large amounts of labeled training data, something that

can be expensive and tedious to obtain. These barriers of

time and cost are expanded when the task is to discover

more fine-grained details pertaining to causality, such as

that of finding the specific types of studies and outcomes

that lend evidence for a causal assertion. Additionally, the

vocabulary for biomedical free text can be quite large, as it

contains not only common words but also domain-specific

terms. This large vocabulary set requires an even larger

training data for the machine-learning model to predict the

necessary components for representing causal phenomena.

Thus, to automatically extract causal sentences, an ap-

proach is required that does not suffer from limitations in

the size of the training data, and that can be performed

efficiently. The approach presented in this paper is inspired

by the analogy of the aforementioned problem to that of

comparing a set of genomic sequences in bioinformatics.

Though it may not be obvious, there is indeed a con-

nection between aligning sequences in genomic data and

finding causal sentences in free text. While each sentence

may contain a unique set of words, the part-of-speech (POS)

sequence of each sentence is likely to be much more common.

Breaking each sentence into its grammatical structures can

thus help to identify patterns in the way that causal rela-

tions are described. Thus, applying an alignment method

to the grammatical structures of sentences has the potential

to discover similarities that may be missed by approaches

that focus only on words. We further illustrate this with

the following example of three sentences and their corre-

sponding POS mappings (for brevity we replace the POS

label with a single character: A = pronoun, B = verb, C

= determiner, E = adjective, F = noun, G = preposition):

We noticed a rather large increase in insulin after eating.

A B C D E F G F G B

F A B C F G F G B

Today we observed an increase in melatonin after running.

F A B C F G F G B

We observed that we are running out of melatonin today.

A B G A B B G G F F

Here the first two sentences are talking about two different

things; yet both are causal sentences. Their POS structures

are similar. In comparison, the second and third sentence

share a lot of words, more so than the first and second sen-

tences, yet their POS representations have fewer matching

elements, with long gaps in between matches. Therefore,

knowing that the second sentence is causal, we cannot

determine whether the third sentence is causal. It is our

hypothesis that given a labeled set of causal sentences C+

and non-causal sentences C−, a new sentence s is classified

as a causal sentence if its POS structure is most similar to

a causal sentence (than any non-causal sentences) and the

similarity (S) is above a threshold δ,

max
c∈C+

S(c, s) > max
c∈C−

S(c, s) ∧ max
c∈C+

S(c, s) > δ

The approach presented here finds causal relations by

comparing the POS mappings of unlabeled sentences to

that of labeled sentences A new causal sentence is dis-

covered by identifying the optimal number of alignments

between the grammatical representations of the sentences.

This alignment approach can thus classify causal sentences

accurately and efficiently, and it has the potential to be

used for other problems as well.

However, existing methods of sequence alignment are

insufficient for aligning POS representations of free text:

either (1) they require the user to specify the number of

local alignments [15] or (2) they introduce a gap penalty

for each new local alignment [16], possibly leading to erro-

neous alignments [15]. Given the nature of free text, it is

unreasonable to ask the users to pre-specify the number of

local alignments. Here, we generalize existing alignment

algorithms by removing the need to specify these param-

eters, while keeping the same algorithmic complexity in

terms of both space and time. This generalization allows us

to efficiently apply the algorithm to NLP. The techniques

presented in this paper need not be limited to extracting

causality. We recommend using our approach for informa-

tion retrieval tasks dealing with sequential similarity when

the input data set is too small to be sufficient for machine

learning.

2. Methods

The proposed approach, named OpBerg, builds upon

the AGE algorithm: it uses a similar strategy to find the

optimal number of local alignments. AGE can be thought

of as splitting the input sequences into segments and then

running a local alignment algorithm on those segments.

The original form of AGE that involves going forward and

reverse in two matrices makes any additional alignment

gaps difficult to compute and store. It is thus the linear-

space algorithm that holds the key to solving the problem

of optimal local alignments. Because the directionality

moves from left to right (or right to left), this approach

can be used to split the strings into an arbitrary number

of segments. Further information is needed to implement

the proposed approaches that retain necessary information

about the locations of the gaps in the alignments. The

change required to the original AGE equation is the addi-

tion of a matrix that stores the location of a newly created

alignment (for brevity we show only the relevant addition

to Equation 1):

X(i, j) =



X(i-1, j), if R(i, j) = R(i-1, j) +Q

X(i-1, j-1), if R(i, j) = R(i-1, j-1) + S(ai, bj)

X(i, j-1), if R(i, j) = R(i, j-1) +Q

(i-1, j-1), if R(i, j) = M(i, j-1) + S(ai, bj)

(0, 0), if R(i, j) = 0

This optimal solution also uses our proposed concept of

score length, whose definition is as follows:

Definition: score length. The score length for the align-

ment of POS tokens aiai+1 . . . ai+d1
and bjbj+1 . . . bj+d2

is defined as the difference between the max score in the

alignment matrix at cell locations (i+ d1, j + d2) and (i, j).

A naive algorithm for solving the optimal alignment prob-

lem is to run the existing AGE method on every possible

number of local alignments that could reasonably occur:

L(i, j, 0) = Max


L(i− 1, j, 0) +Q

L(i− 1, j − 1, 0) + S(ai, bj)

L(i, j − 1, 0) +Q

0



L(i, j, k) = Max



L(i− 1, j, k) +Q

L(i− 1, j − 1, k) + S(ai, bj)

L(i, j − 1, k) +Q

M(i− 1, j − 1, k) + S(ai, bj)

0


M(i, j, 0) = Max


M(i− 1, j, 0)

L(i, j, 0)

M(i, j − 1, 0)


M(i, j, k) = Max


M(i− 1, j, k)

L(i, j, k − 1)

M(i, j − 1, k)


XI(i, j) = X(i− 1, j, k)

XM (i, j) = X(i− 1, j − 1, k)

XD(i, j) = X(i, j − 1, k)

XX(i, j) = X(i, j, k − 1) ∪ (i− 1, j − 1)

X0 = (0, 0)

LI(i, j, k) = L(i− 1, j, k) +Q

LM (i, j, k) = L(i− 1, j − 1, k) + S(ai, bj)

LD(i, j, k) = L(i, j − 1, k) +Q

LX(i, j, k) = M(i− 1, j − 1, k) + S(ai, bj)

X(i, j, k) =



XI(i, j), if L(i, j, k) = LI(i, j, k)

XM (i, j), if L(i, j, k) = LM (i, j, k)

XD(i, j), if L(i, j, k) = LD(i, j, k)

XX(i, j), if L(i, j, k) = LX(i, j, k)

X0, if L(i, j, k) = 0 (2)

Although this may seem to be an unreasonable solution,

the running time and memory usage remain polynomial

and thus feasible for small input sizes.

As shown by Equation 2, the change required is to com-

pute and store the possible different alignments using a

separate matrix for each split. A new variable is introduced,

k, which represents the current number of local alignments

to run on the given input sequences. The results of these

additions require an n factor increase in both running time

and memory retention, where n is defined as the size of

the largest input POS token sequence. The running time

becomes O(n3) with memory required as O(n3).

Like the segmented least squares problem [17], it is intu-

itive to add a penalty (P) for each additional increase in

local alignments. This penalty is needed since otherwise,

the optimal alignment would always just match individual

POS tokens. Because this penalty is proportional to the

number of local alignments, we make the penalty a simple

linear constant. The maximum alignment score can then

be defined as:

Max
1≤k≤n

[P × k +M(|A|, |B|, k)] ,

where A and B are the input POS token sequences mapped

from two sentences. M is the three-dimensional maximum

matrix which holds the maximum alignment score for each

ai, bj , and k; where ai ∈ A and bj ∈ B.

A simple linear penalty constant reveals that returning

one such alignment is not a trivial and deterministic task.

The linear penalty can be thought of as an additional larger

gap penalty, thus taking the form of a generalized global

alignment [16]. It has already been shown [15] that this

can lead to improper alignments.

The question then becomes: What is the optimal number

of alignments? For example, a user may prefer to find an

alignment that has only 1 large segment aligned and a score

of 28 over 10 alignments and a score of 29. To determine

the correct number of alignments, this work focuses on

three major trade-offs:

1. Number of alignments.
2. Score length to break apart an alignment (α).
3. Minimum score length to start an alignment (β).

The naive algorithm solves the problem of finding the

optimal number of local alignments, but it does so at a

considerable cost. For causal sentences, this increase is not

infeasible due to the relatively low input size of sentences.

But running this algorithm over a very large corpus like the

entirety of PubMed Central1 would carry a considerable

execution cost. Thus, it is advantageous to seek solutions

that are more efficient in both time and space. Opberg,

the approach we present here, seeks to reduce memory by

a factor of n2 and execution time by a factor of n2.

2.1. OpBerg

Note that during execution of the naive algorithm de-

scribed above, once it is decided that a new local alignment

is a better choice, the optimal solution can then only be of

the same or more alignments. This allows us to reuse the

existing M matrix and shave off the k dimension, allowing

for much simpler bookkeeping. We introduce a new matrix

L that represents the values of a local alignment. The

M matrix then takes on the interpretation of a matrix

whose values are the max of the previous max M cell value

and the corresponding L cell value. The optimal solution

then can be in the L matrix (that is, performing a local

alignment) or in the M matrix (that is, moving through

the cells of the matrix and not decreasing in value). We

use the notation that if the optimal solution is in the L

matrix, then it is in the “L” or “alignment” state; and if

the optimal solution is in the M matrix, then it is in the

1https://www.ncbi.nlm.nih.gov/pmc/

https://www.ncbi.nlm.nih.gov/pmc/

“M” or “max” state. Given that there is only one L state,

it is entirely possible for the optimal solution to transition

multiple times from the M state to the L state before

beginning an alignment. We store the values of a transition

in a new matrix N which holds the point of a transition

in and out of the M state. Another matrix X holds the

points of all transitions through the optimal solution.

The three trade-offs discussed above can be dealt with

in various ways. To account for the number of alignments,

we can leave in the original penalty P , but instead of

considering this as a larger gap penalty, one can think of it

as a value less than 1 and possibly even 0 (with the original

gap penalty greater than 1). By doing so, one can easily

gauge at what point a new alignment gap starts to weigh

negatively on the score and thus becomes less desirable.

To consider the minimum score length that is considered

to break apart an alignment, we need only consider the

point at which the algorithm exits the max state. If the

current alignment has not dropped below the input score

length α, then we will restrict the transition until the

appropriate threshold has been reached.

Likewise for the start of an alignment, with the change

only to the entering of the max state. This requires storing

the score at the start of entering the alignment state so

that we can compare the difference to see if we are above

threshold. This value is stored in the matrix H. This allows

us to restrict the length as we do for breaking apart an

alignment, but a key difference happens when an alternative

alignment is nonexistent. For example, a user may prefer

not to start a segment of only 3 matched characters unless

this is the max score out of any alternative alignments

by a score of 3 matches. We must introduce into this

restriction of a transition into the max state a way to keep

track of how a score length smaller than β influences the

score. That is, we do not necessarily want to discard these

alignments unless there is a better alignment available. A

new parameter is introduced, γ(x), which allows the user

to specify a function to weigh how important a certain

score length is when it is below threshold, but no higher

scoring alternatives exist.

With these parameters, the algorithm is bound to a run-

ning time of O(n2) and memory requirements of O(n3).

The intuition for this algorithm follows the intuition of

segmented least squares. In the segmented least squares

problem, we are searching for a balance between accu-

racy and number of lines, whereas in OpBerg we seek this

parsimony between alignment score and number of jumps

through the matrix to start a new local alignment. The

trade-off is then enforced by the penalty constants P , α,

β, and function γ(x).

2.1.1. Affine Gap

It should not always be the case that insertions and

deletions (indels) between the inputs are weighted equally,

regardless of where they occur. For instance, in certain

causal sentences, a large cluster of indels may represent a

tangential segment of words. To capture these occurrences,

an affine gap model that takes into account segments of

tangential words must be adapted to OpBerg.

The changes required of OpBerg for an affine gap are sim-

ilar to those in the original local alignment algorithm [18].

Three matrices—representing a match/mismatch (LG), in-

sertion (LI), and deletion (LD) transitions, respectively—

must be used in place of the original L matrix. The max

matrix M cannot enter into any of these three states be-

cause it represents a jump through the inputs, so it remains

the same. Also, since a local alignment must start and end

with a match (diagonal move), the transition between the

L states to the M states can occur only through the new

LG matrix. This also applies to the X and N matrices, as

they only must monitor jumps between the LG and the M

matrices.

The recurrent relations needed for the affine gap OpBerg

model are given in their entirety as:

LI(i, j) = Max


LI(i− 1, j) + E

LG(i− 1, j) +O + E

LD(i− 1, j) +O + E



HI(i, j) =


HI(i− 1, j) if LI(i, j) = LI(i− 1, j) + E

HG(i− 1, j) if LI(i, j) = LG(i− 1, j) +O + E

HD(i− 1, j) if LI(i, j) = LD(i− 1, j) +O + E

θ(i, j) = Max

{
M(i− 1, j)

M(i, j − 1)

}

δ(i, j) = Max


0

LI(i− 1, j − 1) + S(ai, bj)

LG(i− 1, j − 1) + S(ai, bj)

LD(i− 1, j − 1) + S(ai, bj)


LG,I,H(i, j) = LI(i− 1, j − 1) + S(ai, bj)

LG,G,H(i, j) = LG(i− 1, j − 1) + S(ai, bj)

LG,D,H(i, j) = LD(i− 1, j − 1) + S(ai, bj)

LG,M,H(i, j) = M(i− 1, j − 1) + S(ai, bj) + P

ψ(i, j) =



θ(i, j) if δ(i, j) = 0

HI(i− 1, j − 1) if δ(i, j) = LG,I,H(i, j)

HG(i− 1, j − 1) if δ(i, j) = LG,G,H(i, j)

HD(i− 1, j − 1) if δ(i, j) = LG,D,H(i, j)

π(i, j) = M(i− 1, j − 1) + S(ai, bj) + P

ε(i, j) =

π(i, j) if δ(i, j)− ψ(i, j) ≤ α

−∞ otherwise

LG(i, j) = Max

{
δ(i, j)

ε(i, j)

}

HG(i, j) =



θ(i, j) if LG(i, j) = 0

HI(i− 1, j − 1) if LG(i, j) = LG,I,H(i, j)

HG(i− 1, j − 1) if LG(i, j) = LG,G,H(i, j)

HD(i− 1, j − 1) if LG(i, j) = LG,D,H(i, j)

θ(i, j) if LG(i, j) = LG,M (i, j)

LD(i, j) = Max


LI(i, j − 1) +O + E

LG(i, j − 1) +O + E

LD(i, j − 1) + E


LD,I,H(i, j) = LI(i, j − 1) +O + E

LD,G,H(i, j) = LG(i, j − 1) +O + E

LD,D,H(i, j) = LD(i, j − 1) + E

HD(i, j) =


HI(i, j − 1) if LD(i, j) = LD,I,H(i, j)

HG(i, j − 1) if LD(i, j) = LD,G,H(i, j)

HD(i, j − 1) if LD(i, j) = LD,D,H(i, j)

ζ(i, j) =

LG(i, j) if LG(i, j) ≥ β

γ(LG(i, j)) otherwise

M(i, j) = Max


ζ(i, j)

M(i− 1, j)

M(i, j − 1)


LG,I,X(i, j) = LI(i− 1, j) +Q

LG,G,X(i, j) = LG(i− 1, j − 1) + S(ai, bj)

LG,D,X(i, j) = LD(i, j − 1) +Q

NX(i, j) = N(i− 1, j − 1) ∪ (i, j)

XD(i, j) = X(i− 1, j − 1)

X(i, j) =



X(i− 1, j) if LG(i, j) = LG,I,X(i, j)

XD(i, j) if LG(i, j) = LG,G,X(i, j)

X(i, j − 1) if LG(i, j − 1) = LG,D,X(i, j)

NX(i, j) if LG(i, j) = ε(i, j)

∅ if LG(i, j) = 0

N(i, j) =


X(i, j) ∪ (i, j), if M(i, j) = ζ(i, j)

N(i− 1, j), if M(i, j) = M(i− 1, j)

N(i, j − 1), if M(i, j) = M(i, j − 1) (3)

where (i, j) represents the cell location of both matrices

and the ith POS token in A and the jth POS token in B.

S is a function that takes in two POS tokens and returns

a score value. The opening gap penalty is represented by

O and the extension penalty by E.

Even with the newly created matrices and additional

processing that must take place to populate the matrices,

the running time will be O(n2), with memory as O(n2).

3. Conclusion

This paper introduces a novel approach to causality dis-

covery by considering alignments among POS mappings of

sentences. This approach considers restrictions on the score

size to break apart an alignment and enforces a minimum

length requirement while also considering the number of

alignments. OpBerg discovers meaningful alignments that

return from alignment query results that are more useful

in finding semantic similarity of two causal sentences. The

improved model and efficient implementation make OpBerg

the best model to use when performing tasks that involve

the alignment of two or more sets of input, particularly in

that of POS mappings for causal extraction.

References

[1] A. J. Silva, K.-R. Müller, The need for novel informatics tools

for integrating and planning research in molecular and cellular

cognition, Learning and Memory 22 (9) (2015) 494–498.

[2] N. J. Matiasz, et al., Computer-aided experiment planning to-

ward causal discovery in neuroscience, Frontiers in Neuroinfor-

matics 11 (2017) 12. doi:10.3389/fninf.2017.00012.

[3] C. D. Manning, et al., The Stanford CoreNLP natural language

processing toolkit, in: Association for Computational Linguistics

(ACL) System Demonstrations, 2014, pp. 55–60.

[4] M. Selfridge, Toward a natural language-based causal model

acquisition system, Applied Artificial Intelligence 3 (2-3) (1989)

191–212. doi:10.1080/08839518908949924.

URL http://dx.doi.org/10.1080/08839518908949924

[5] B. T. Low, K. Chan, L. Choi, M. Chin, S. Lay, Semantic

expectation-based causation knowledge extraction: A study on

hong kong stock movement analysis, in: Knowledge Discovery

and Data Mining - PAKDD 2001, 5th Pacific-Asia Conference,

Hong Kong, China, April 16-18, 2001, Proceedings, 2001, pp.

114–123. doi:10.1007/3-540-45357-1_15.

URL https://doi.org/10.1007/3-540-45357-1_15

[6] R. M. Kaplan, G. Berry-Rogghe, Knowledge-based acquisition of

causal relationships in text, Knowledge Acquisition 3 (3) (1991)

317–337.

[7] R. Girju, D. I. Moldovan, Text mining for causal relations, in:

Proceedings of the Fifteenth International Florida Artificial Intel-

ligence Research Society Conference, May 14-16, 2002, Pensacola

Beach, Florida, USA, 2002, pp. 360–364.

[8] Q. Bui, et al., Extracting causal relations on HIV drug resistance

from literature, BMC Bioinformatics 11 (2010) 101. doi:10.

1186/1471-2105-11-101.

[9] P. Tapanainen, T. Järvinen, A non-projective dependency parser,

in: 5th Applied Natural Language Processing Conference, ANLP

1997, Marriott Hotel, Washington, USA, March 31 - April 3,

1997, 1997, pp. 64–71.

URL http://aclweb.org/anthology-new/A/A97/A97-1011.pdf

[10] R. Girju, et al., A knowledge-rich approach to identifying se-

mantic relations between nominals, Inf. Process. Manage. 46 (5)

(2010) 589–610. doi:10.1016/j.ipm.2009.09.002.

[11] Q. Do, et al., Minimally supervised event causality identification,

in: Proceedings of the 2011 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2011, 27-31 July 2011,

John McIntyre Conference Centre, Edinburgh, UK, A meeting

of SIGDAT, a Special Interest Group of the ACL, 2011, pp.

294–303.

[12] F. Huang, A. Yates, Open-domain semantic role labeling by

modeling word spans, in: ACL 2010, Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics,

July 11-16, 2010, Uppsala, Sweden, 2010, pp. 968–978.

[13] D. Chang, K. Choi, Causal relation extraction using cue phrase

and lexical pair probabilities, in: Natural Language Processing

- IJCNLP 2004, First International Joint Conference, Hainan

Island, China, March 22-24, 2004, Revised Selected Papers, 2004,

pp. 61–70.

[14] Causal Relation Extraction.

[15] A. Abyzov, M. Gerstein, Age: defining breakpoints of genomic

structural variants at single-nucleotide resolution, through opti-

mal alignments with gap excision, Bioinformatics 27 (5) (2011)

595–603.

[16] X. Huang, K.-M. Chao, A generalized global alignment algorithm,

Bioinformatics 19 (2) (2003) 228–233.

[17] R. Bellman, et al., Some numerical experiments using newton’s

method for nonlinear parabolic and elliptic boundary-value prob-

lems, Communications of the ACM 4 (4) (1961) 187–191.

[18] O. Gotoh, An improved algorithm for matching biological se-

quences, Journal of molecular biology 162 (3) (1982) 705–708.

http://dx.doi.org/10.3389/fninf.2017.00012
http://dx.doi.org/10.1080/08839518908949924
http://dx.doi.org/10.1080/08839518908949924
http://dx.doi.org/10.1080/08839518908949924
http://dx.doi.org/10.1080/08839518908949924
https://doi.org/10.1007/3-540-45357-1_15
https://doi.org/10.1007/3-540-45357-1_15
https://doi.org/10.1007/3-540-45357-1_15
http://dx.doi.org/10.1007/3-540-45357-1_15
https://doi.org/10.1007/3-540-45357-1_15
http://dx.doi.org/10.1186/1471-2105-11-101
http://dx.doi.org/10.1186/1471-2105-11-101
http://aclweb.org/anthology-new/A/A97/A97-1011.pdf
http://aclweb.org/anthology-new/A/A97/A97-1011.pdf
http://dx.doi.org/10.1016/j.ipm.2009.09.002

	1 Introduction
	2 Methods
	2.1 OpBerg
	2.1.1 Affine Gap

	3 Conclusion

