Abstract
In this work, we present an accurate and novel edge detection technique for gray scale images using partial sum of Taylor series expansion (TSE). Taylor’s expansion theory gives a good estimator for continuous function in a small neighbourhood based on its derivatives. We explore the application of TSE for classical edge detection problem of identifying intensity changes in gray scale images. To support oriented edges, partial sum is separately obtained along multiple directions using directional derivatives. We provide theoretical explanation and empirical evidences to justify the suitability of Taylor theory for edge detection problem. Experiments are conducted on segmentation dataset BSDS500 and the results are compared with existing classical edge detectors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)
Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. 349, 532–547 (2019)
Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. In: Proceedings CVPR 1996, 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 465–470. IEEE (1996)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Kivinen, J., Williams, C., Heess, N.: Visual boundary prediction: a deep neural prediction network and quality dissection. In: Artificial Intelligence and Statistics, pp. 512–521 (2014)
Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U.: Classification with an edge: improving semantic image segmentation with boundary detection. ISPRS J. Photogram. Remote Sens. 135, 158–172 (2018)
Guan, W., Wang, T., Qi, J., Zhang, L., Huchuan, L.: Edge-aware convolution neural network based salient object detection. IEEE Signal Process. Lett. 26(1), 114–118 (2019)
Kovalevsky, V.: A new method of edge detection. In: Modern Algorithms for Image Processing, pp. 101–125. Springer, Cham (2019). https://doi.org/10.1007/978-1-4842-4237-7_7
Orujov, F., Maskeliūnas, R., Damaševičius, R., Wei, W.: Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Appl. Soft Comput. 94, 106452 (2020)
Versaci, M., Morabito, F.C.: Image edge detection: a new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy Syst. 23(4), 918–936 (2021)
Abad, A., Barrio, R., Marco-Buzunariz, M., Rodríguez, M.: Automatic implementation of the numerical Taylor series method: a mathematica and sage approach. Appl. Math. Comput. 268, 227–245 (2015)
Zhou, Z., Chen, L., Xinrong, H.: Color images enhancement for edge information protection based on second order Taylor series expansion approximation. Optik-Int. J. Light Electron Optics 126(3), 368–372 (2015)
Chung, Y.: Vector Taylor series based model adaptation using noisy speech trained hidden Markov models. Pattern Recogn. Lett. 75, 36–40 (2016)
Bastys, A., Kranauskas, J., Krüger, V.: Iris recognition by fusing different representations of multi-scale Taylor expansion. Comput. Vis. Image Underst. 115(6), 804–816 (2011)
Shekar, B.H, Bhat, S.S.: Iris recognition using partial sum of second order Taylor series expansion. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, p. 81. ACM (2016)
Venkatanath, N., Praneeth, D, Bh, M.C., Channappayya, S.S., Medasani, S.S.: Blind image quality evaluation using perception based features. In: 2015 Twenty First National Conference on Communications (NCC), pp. 1–6. IEEE (2015)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Springer Nature Switzerland AG
About this paper
Cite this paper
Shekar, B.H., Bhat, S.S. (2024). Edge Detection in Gray Scale Images Using Partial Sum of Second Order Taylor Series Expansion. In: Ghosh, A., King, I., Bhattacharyya, M., Sankar Ray, S., K. Pal, S. (eds) Pattern Recognition and Machine Intelligence. PReMI 2021. Lecture Notes in Computer Science, vol 13102. Springer, Cham. https://doi.org/10.1007/978-3-031-12700-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-12700-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12699-4
Online ISBN: 978-3-031-12700-7
eBook Packages: Computer ScienceComputer Science (R0)