Skip to main content

Edge Detection in Gray Scale Images Using Partial Sum of Second Order Taylor Series Expansion

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2021)

Abstract

In this work, we present an accurate and novel edge detection technique for gray scale images using partial sum of Taylor series expansion (TSE). Taylor’s expansion theory gives a good estimator for continuous function in a small neighbourhood based on its derivatives. We explore the application of TSE for classical edge detection problem of identifying intensity changes in gray scale images. To support oriented edges, partial sum is separately obtained along multiple directions using directional derivatives. We provide theoretical explanation and empirical evidences to justify the suitability of Taylor theory for edge detection problem. Experiments are conducted on segmentation dataset BSDS500 and the results are compared with existing classical edge detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)

    Article  Google Scholar 

  2. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  4. Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. 349, 532–547 (2019)

    Article  MathSciNet  Google Scholar 

  5. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. In: Proceedings CVPR 1996, 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 465–470. IEEE (1996)

    Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  7. Kivinen, J., Williams, C., Heess, N.: Visual boundary prediction: a deep neural prediction network and quality dissection. In: Artificial Intelligence and Statistics, pp. 512–521 (2014)

    Google Scholar 

  8. Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U.: Classification with an edge: improving semantic image segmentation with boundary detection. ISPRS J. Photogram. Remote Sens. 135, 158–172 (2018)

    Article  Google Scholar 

  9. Guan, W., Wang, T., Qi, J., Zhang, L., Huchuan, L.: Edge-aware convolution neural network based salient object detection. IEEE Signal Process. Lett. 26(1), 114–118 (2019)

    Article  Google Scholar 

  10. Kovalevsky, V.: A new method of edge detection. In: Modern Algorithms for Image Processing, pp. 101–125. Springer, Cham (2019). https://doi.org/10.1007/978-1-4842-4237-7_7

    Chapter  Google Scholar 

  11. Orujov, F., Maskeliūnas, R., Damaševičius, R., Wei, W.: Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Appl. Soft Comput. 94, 106452 (2020)

    Google Scholar 

  12. Versaci, M., Morabito, F.C.: Image edge detection: a new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy Syst. 23(4), 918–936 (2021)

    Article  Google Scholar 

  13. Abad, A., Barrio, R., Marco-Buzunariz, M., Rodríguez, M.: Automatic implementation of the numerical Taylor series method: a mathematica and sage approach. Appl. Math. Comput. 268, 227–245 (2015)

    Google Scholar 

  14. Zhou, Z., Chen, L., Xinrong, H.: Color images enhancement for edge information protection based on second order Taylor series expansion approximation. Optik-Int. J. Light Electron Optics 126(3), 368–372 (2015)

    Article  Google Scholar 

  15. Chung, Y.: Vector Taylor series based model adaptation using noisy speech trained hidden Markov models. Pattern Recogn. Lett. 75, 36–40 (2016)

    Article  Google Scholar 

  16. Bastys, A., Kranauskas, J., Krüger, V.: Iris recognition by fusing different representations of multi-scale Taylor expansion. Comput. Vis. Image Underst. 115(6), 804–816 (2011)

    Article  Google Scholar 

  17. Shekar, B.H, Bhat, S.S.: Iris recognition using partial sum of second order Taylor series expansion. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, p. 81. ACM (2016)

    Google Scholar 

  18. Venkatanath, N., Praneeth, D, Bh, M.C., Channappayya, S.S., Medasani, S.S.: Blind image quality evaluation using perception based features. In: 2015 Twenty First National Conference on Communications (NCC), pp. 1–6. IEEE (2015)

    Google Scholar 

  19. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  20. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Shekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shekar, B.H., Bhat, S.S. (2024). Edge Detection in Gray Scale Images Using Partial Sum of Second Order Taylor Series Expansion. In: Ghosh, A., King, I., Bhattacharyya, M., Sankar Ray, S., K. Pal, S. (eds) Pattern Recognition and Machine Intelligence. PReMI 2021. Lecture Notes in Computer Science, vol 13102. Springer, Cham. https://doi.org/10.1007/978-3-031-12700-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12700-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12699-4

  • Online ISBN: 978-3-031-12700-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics