Skip to main content

Influence of Dataflow Graph Moldable Parameters on Optimization Criteria

  • Conference paper
  • First Online:
Design and Architecture for Signal and Image Processing (DASIP 2022)

Abstract

The integration of static parameters into Synchronous Dataflow (SDF) models enables the customization of an application functional and non-functional behaviours. However, these parameter values are generally set by the developer for a manual Design Space Exploration (DSE). Instead of a single value, moldable parameters accept a set of alternative values, representing all possible configurations of the application. The DSE is responsible for selecting the best parameter values to optimize a set of criteria such as latency, energy, or memory footprint. However, the DSE process explodes in complexity with the number of parameters and their possible values.

In this paper, we study an automated DSE algorithm exploring multiple configurations of a dataflow application. Our experiments show that: 1) Only limited sets of configurations lead to Pareto-optimal solutions in a multi-criteria optimization scenario. 2) How individual parameters impact on optimization criteria are determined accurately from a limited subset of design points. The approach was evaluated on three image processing applications having from hundreds to thousands configurations.

This work was supported by DARK-ERA (ANR-20-CE46-0001-01).

A. Honorat, T. Bourgoin and H. Miomandre—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the throughput, its reciprocal is considered so that it can be minimized.

  2. 2.

    Code is available upon request. For SIFT, see a similar version here: https://github.com/preesm/preesm-apps/tree/master/SIFT.

References

  1. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software synthesis from dataflow graphs, vol. 360. Springer, NY (1996). https://doi.org/10.1007/978-1-4613-1389-2

  2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow. IEEE Trans. Signal Process. 44(2), 397–408 (1996)

    Article  Google Scholar 

  3. Bouakaz, A., Fradet, P., Girault, A.: A survey of parametric dataflow models of computation. ACM Trans. Des. Autom. Electron. Syst. 22(2), 1–25 (2017)

    Google Scholar 

  4. Castrillón, J.: Programming heterogeneous MPSoCs: tool flows to close the software productivity gap. Ph.D. thesis, RWTH Aachen University, Aachen (2013). Aachen, Techn. Hochsch., Diss., 2013

    Google Scholar 

  5. Castrillon, J., Leupers, R., Ascheid, G.: Maps: mapping concurrent dataflow applications to heterogeneous MPSoCs. IEEE Trans. Industr. Inf. 9(1), 527–545 (2013)

    Article  Google Scholar 

  6. Desnos, K., Pelcat, M., Nezan, J., Aridhi, S.: Pre- and post-scheduling memory allocation strategies on MPSoCs. In: Proceedings of the 2013 Electronic System Level Synthesis Conference (ESLsyn), pp. 1–6 (2013)

    Google Scholar 

  7. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S., Aridhi, S.: PiMM: parameterized and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 41–48. IEEE (2013)

    Google Scholar 

  8. Ecker, W., Müller, W., Dömer, R.: Hardware-dependent software, pp. 1–13. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9436-1_1

  9. Honorat, A., Desnos, K., Bhattacharyya, S.S., Nezan, J.F.: Scheduling of synchronous dataflow graphs with partially periodic real-time constraints. In: Real-Time Networks and Systems. Paris, France (2020)

    Google Scholar 

  10. Kang, S., Yang, H., Schor, L., Bacivarov, I., Ha, S., Thiele, L.: Multi-objective mapping optimization via problem decomposition for many-core systems. In: 2012 IEEE 10th Symposium on Embedded Systems for Real-time Multimedia, pp. 28–37 (2012)

    Google Scholar 

  11. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)

    Article  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J., Aridhi, S.: Preesm: a dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 36–40 (2014)

    Google Scholar 

  14. Schwarzer, T., et al.: Compilation of dataflow applications for multi-cores using adaptive multi-objective optimization. ACM Trans. Des. Autom. Electron. Syst. 24(3), 1–23 (2019)

    Article  Google Scholar 

  15. Wang, J., Roop, P.S., Girault, A.: Energy and timing aware synchronous programming. In: International Conference on Embedded Software, EMSOFT 2016, p. 10. ACM, Pittsburgh (2016)

    Google Scholar 

  16. Yu, W., Kornerup, J., Gerstlauer, A.: MASES: mobility and slack enhanced scheduling for latency-optimized pipelined dataflow graphs. In: Proceedings of the 21st International Workshop on Software and Compilers for Embedded Systems, pp. 104–109. SCOPES 2018, ACM, NY (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Honorat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Honorat, A., Bourgoin, T., Miomandre, H., Desnos, K., Menard, D., Nezan, JF. (2022). Influence of Dataflow Graph Moldable Parameters on Optimization Criteria. In: Desnos, K., Pertuz, S. (eds) Design and Architecture for Signal and Image Processing. DASIP 2022. Lecture Notes in Computer Science, vol 13425. Springer, Cham. https://doi.org/10.1007/978-3-031-12748-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12748-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12747-2

  • Online ISBN: 978-3-031-12748-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics