Skip to main content

Approximate NFA Universality Motivated by Information Theory

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13439))

Included in the following conference series:

Abstract

In coding and information theory, it is desirable to construct maximal codes that can be either variable length codes or error control codes of fixed length. However deciding code maximality boils down to deciding whether a given NFA is universal, and this is a hard problem (including the case of whether the NFA accepts all words of a fixed length). On the other hand, it is acceptable to know whether a code is ‘approximately’ maximal, which then boils down to whether a given NFA is ‘approximately’ universal. Here we introduce the notion of a \((1-\varepsilon )\)-universal automaton and present polynomial randomized approximation algorithms to test NFA universality and related hard automata problems, for certain natural probability distributions on the set of words. We also conclude that the randomization aspect is necessary, as approximate universality remains hard for any fixed polynomially computable \(\varepsilon \).

Research supported by NSERC, Canada (Discovery Grants of S.K. and of M.M.) and by CMUP through FCT project UIDB/00144/2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following the presentation style of [6, pg 193], we refrain from cluttering the notation with the use of a variable for the set of instances.

  2. 2.

    A real \(x\in (0, 1)\) is computable if there is an algorithm that takes as input an integer \(n>0\) and computes the n-th bit of x. It is polynomially computable if the algorithm works in time \(O(n^k)\), for some fixed \(k\in \mathbb {N} _0\), when the input n is given in unary.

  3. 3.

    Many authors specify this probability to be at least 2/3, but they state that any value \(\ge 1/2\) works [1, 6].

  4. 4.

    Depending on \(\boldsymbol{t}\), which is a transducer, one can have prefix codes, suffix codes, infix codes, error control codes.

References

  1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  2. Arrighi, E., et al.: On the complexity of intersection non-emptiness for star-free language classes. CoRR, abs/2110.01279 (2021)

    Google Scholar 

  3. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  4. Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: decidability, complexity, implementation. Int. J. Found. Comput. Sci. 23(1), 67–85 (2012)

    Article  MathSciNet  Google Scholar 

  5. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time hypothesis. Algorithms 10(1), 24 (2017)

    Article  MathSciNet  Google Scholar 

  6. Goldreich, O.: Computational complexity - A Conceptual Perspective. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  7. Golomb, S.W.: A class of probability distributions on the integers. J. Number Theory 2, 189–192 (1970)

    Article  MathSciNet  Google Scholar 

  8. Golomb, S.W.: Probability, information theory, and prime number theory. Discret. Math. 106(107), 219–229 (1992)

    Article  MathSciNet  Google Scholar 

  9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley-Longman (2001)

    Google Scholar 

  10. Jürgensen, H.: Complexity, information, energy. Int. J. Found. Comput. Sci. 19(4), 781–793 (2008)

    Article  MathSciNet  Google Scholar 

  11. Konstantinidis, S., Mastnak, M.: Embedding rationally independent languages into maximal ones. J. Automata Lang. Comb. 21(4), 311–338 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Konstantinidis, S., Moreira, N., Reis, R.: Randomized generation of error control codes with automata and transducers. RAIRO - Theo. Inform. Appl. 52, 169–184 (2018)

    Article  MathSciNet  Google Scholar 

  13. Marcus, B.H., Siegel, P., Roth, R.: Constrained systems and coding for recording channels. In: Handbook of Coding Theory, pp. 1635–1764. Elsevier (1998). http://www.math.ubc.ca/~marcus/Handbook/

  14. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, 2nd edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5

  16. Vardy, A.: Trellis structure of codes. In: Handbook of Coding Theory, pp. 1989–2117. Elsevier, Amsterdam (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Konstantinidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konstantinidis, S., Mastnak, M., Moreira, N., Reis, R. (2022). Approximate NFA Universality Motivated by Information Theory. In: Han, YS., Vaszil, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2022. Lecture Notes in Computer Science, vol 13439. Springer, Cham. https://doi.org/10.1007/978-3-031-13257-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13257-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13256-8

  • Online ISBN: 978-3-031-13257-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics