Skip to main content

Radiomics Analyses of Schwannomas in the Head and Neck: A Preliminary Analysis

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

The purpose of this preliminary study was to evaluate the differences in Magnetic Resonance Imaging (MRI)-based radiomics analysis between cerebellopontine angle neurinomas and schwannomas originating from other locations in the neck spaces. Twenty-six patients with available MRI exams and head and neck schwannomas were included. Lesions were manually segmented on the precontrast and postcontrast T1 sequences. The radiomics features were extracted by using PyRadiomics software, and a total of 120 radiomics features were obtained from each segmented tumor volume. An operator-independent hybrid descriptive‐inferential method was adopted for the selection and reduction of the features, while discriminant analysis was used to construct the predictive model. On precontrast T1 images, the original_glcm_InverseVariance demonstrated a good performance with an area under the receiver operating characteristic (AUROC) of 0.756 (95% C.I. 0.532–0.979; p = 0.026). On postcontrast T1 images, the original_glcm_Idmn provided a good diagnostic performance with an AUROC of 0.779 (95% C.I. 0.572–0.987; p = 0.014). In conclusion, this preliminary analysis showed statistically significant differences in radiomics features between cerebellopontine angle neurinomas and schwannomas of other locations in the neck spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beaman, F.D., Kransdorf, M.J., Menke, D.M.: Schwannoma: radiologic-pathologic correlation. Radiographics 24, 1477–1481 (2004). https://doi.org/10.1148/rg.245045001

    Article  Google Scholar 

  2. Skolnik, A.D., et al.: Cranial nerve schwannomas: diagnostic imaging approach. Radiographics 36, 1463–1477 (2016). https://doi.org/10.1148/rg.2016150199

    Article  Google Scholar 

  3. Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: Radiomics and artificial intelligence: new frontiers in medicine. Recent. Prog. Med. 111(3), 130–135 (2020). Italian. https://doi.org/10.1701/3315.32853

  4. Cutaia, G., et al.: Radiomics and prostate MRI: current role and future applications. J. Imaging. 7, 34 (2021). https://doi.org/10.3390/jimaging7020034

    Article  Google Scholar 

  5. Giambelluca, D., et al.: PI-RADS 3 lesions: role of prostate mri texture analysis in the identification of prostate cancer. Curr. Probl. Diagn. Radiol. (2019). https://doi.org/10.1067/j.cpradiol.2019.10.009

    Article  Google Scholar 

  6. Stefano, A., Gioè, M., Russo, G., Palmucci, S., Torrisi, S.E., Bignardi, S., Basile, A., Comelli, A., Benfante, V., Sambataro, G., Falsaperla, D., Torcitto, A.G., Attanasio, M., Yezzi, A., Vancheri, C.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics 10(5), 306 (2020) https://doi.org/10.3390/DIAGNOSTICS10050306

  7. Cannella, R., la Grutta, L., Midiri, M., Bartolotta, T.V.: New advances in radiomics of gastrointestinal stromal tumors. World J. Gastroenterol. 26, 4729–4738 (2020). https://doi.org/10.3748/WJG.V26.I32.4729

    Article  Google Scholar 

  8. Vernuccio, F., Arnone, F., Cannella, R., Verro, B., Comelli, A., Agnello, F., Stefano, A., Gargano, R., Rodolico, V., Salvaggio, G., Lagalla, R., Midiri, M., Lo Casto, A.: Diagnostic performance of qualitative and radiomics approach to parotid gland tumors: which is the added benefit of texture analysis?. Br. J. Radiol. 94(1128) (2021). https://doi.org/10.1259/bjr.20210340

  9. Yu, B., et al.: Prediction of the degree of pathological differentiation in tongue squamous cell carcinoma based on radiomics analysis of magnetic resonance images. BMC Oral Health 21, 1 (2021). https://doi.org/10.1186/s12903-021-01947-9

    Article  Google Scholar 

  10. Langenhuizen, P.P.J.H., et al.: Radiomics-based prediction of long-term treatment response of vestibular schwannomas following stereotactic radiosurgery. Otol. Neurotol. 41, e1321–e1327 (2020). https://doi.org/10.1097/MAO.0000000000002886

    Article  Google Scholar 

  11. Chen, L., et al.: MRI-based radiomics for differentiating orbital cavernous hemangioma and orbital schwannoma. Front. Med. 8, 2679 (2021). https://doi.org/10.3389/fmed.2021.795038

    Article  Google Scholar 

  12. Zhang, M., et al.: Machine learning approach to differentiation of peripheral schwannomas and neurofibromas: a multi-center study. Neuro. Oncol. (2021). https://doi.org/10.1093/neuonc/noab211

    Article  Google Scholar 

  13. Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  14. Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 37, 961–972 (2021). https://doi.org/10.1002/asmb.2642

    Article  MathSciNet  Google Scholar 

  15. Alongi, P., et al.: Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595–4605 (2021). https://doi.org/10.1007/s00330-020-07617-8

    Article  Google Scholar 

  16. Stefano, A., Comelli, A.: Customized efficient neural network for covid-19 infected region identification in ct images. J. Imaging. 7, 131 (2021). https://doi.org/10.3390/jimaging7080131

    Article  Google Scholar 

  17. Russo, G., et al.: Feasibility on the use of radiomics features of 11[C]-MET PET/CT in central nervous system tumours: Preliminary results on potential grading discrimination using a machine learning model. Curr. Oncol. 28, 5318–5331 (2021). https://doi.org/10.3390/curroncol28060444

    Article  Google Scholar 

  18. George-Jones, N.A., Chkheidze, R., Moore, S., Wang, J., Hunter, J.B.: MRI texture features are associated with vestibular schwannoma histology. Laryngoscope. 131, E2000–E2006 (2021). https://doi.org/10.1002/lary.29309

    Article  Google Scholar 

  19. Stefano, A., et al.: Robustness of pet radiomics features: impact of co-registration with mri. Appl. Sci. 11, 10170 (2021). https://doi.org/10.3390/app112110170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Comelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cutaia, G. et al. (2022). Radiomics Analyses of Schwannomas in the Head and Neck: A Preliminary Analysis. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics