Skip to main content

Assessing High-Order Interdependencies Through Static O-Information Measures Computed on Resting State fMRI Intrinsic Component Networks

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

Resting state brain networks have reached a strong popularity in recent scientific endeavors due to their feasibility to characterize the metabolic mechanisms at the basis of neural control when the brain is not engaged in any task. The evaluation of these states, consisting in complex physiological processes employing a large amount of energy, is carried out from diagnostic images acquired through resting-state functional magnetic resonance (RS-fMRI) on different populations of subjects. In the present study, RS-fMRI signals from the WU-Minn HCP 1200 Subjects Data Release of the Human Connectome Project were studied with the aim of investigating the high order organizational structure of the brain function in resting conditions. Image data were post-processed through Independent Component Analysis to extract the so-called Intrinsic Component Networks, and a recently proposed framework for assessing high-order interactions in network data through the so-called O-Information measure was exploited. The framework allows an information-theoretic evaluation of pairwise and higher-order interactions, and was here extended to the analysis of vector variables, to allow investigating interactions among multiple Independent Component Networks (ICNs) each composed by several brain regions. Moreover, surrogate data analysis was used to validate statistically the detected pairwise and high-order networks. Our results indicate that RSNs are dominated by redundant interactions among ICN subnetworks, with levels of redundancy that increase monotonically with the order of the interactions analyzed. The ICNs mostly involved in the interactions of any order were the Default Mode and the Cognitive Control networks, suggesting a key role of these areas in mediating brain interactions during the resting state. Future works should assess the alterations of these patterns of functional brain connectivity during task-induced activity and in pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glover, G.H.: Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 22, 133–139 (2011). https://doi.org/10.1016/j.nec.2010.11.001

    Article  Google Scholar 

  2. Chow, M.S., Wu, S.L., Webb, S.E., Gluskin, K., Yew, D.: Functional magnetic resonance imaging and the brain: a brief review. World J. Radiol. 9, 5 (2017). https://doi.org/10.4329/wjr.v9.i1.5

    Article  Google Scholar 

  3. Duyn, J.: Spontaneous fMRI activity during resting wakefulness and sleep. Prog. Brain Res. 193, 295–305 (2011). https://doi.org/10.1016/B978-0-444-53839-0.00019-3

    Article  Google Scholar 

  4. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007). https://doi.org/10.1038/nrn2201

    Article  Google Scholar 

  5. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136–150 (2016). https://doi.org/10.1002/ima.22168

  6. Ran, Q., Jamoulle, T., Schaeverbeke, J., Meersmans, K., Vandenberghe, R., Dupont, P.: Reproducibility of graph measures at the subject level using resting-state fMRI. Brain Behav. 10, 2336–2351 (2020). https://doi.org/10.1002/brb3.1705

    Article  Google Scholar 

  7. Almgren, H., Van de Steen, F., Razi, A., Friston, K., Marinazzo, D.: The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI. Neuroimage 208, 116435 (2020). https://doi.org/10.1016/j.neuroimage.2019.116435

    Article  Google Scholar 

  8. Almgren, H., Van de Steen, F., Kühn, S., Razi, A., Friston, K., Marinazzo, D.: Variability and reliability of effective connectivity within the core default mode network: a multi-site longitudinal spectral DCM study. Neuroimage 183, 757–768 (2018). https://doi.org/10.1016/j.neuroimage.2018.08.053

    Article  Google Scholar 

  9. Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007). https://doi.org/10.1016/j.neuroimage.2007.04.042

    Article  Google Scholar 

  10. Sparacia, G., et al.: Resting-state functional connectome in patients with brain tumors before and after surgical resection. World Neurosurg. 141, e182–e194 (2020). https://doi.org/10.1016/j.wneu.2020.05.054

    Article  Google Scholar 

  11. De Vico Fallani, F., Latora, V., Chavez, M.: A topological criterion for filtering information in complex brain networks. PLoS Comput. Biol. 13, 1–18 (2017). https://doi.org/10.1371/journal.pcbi.1005305

    Article  Google Scholar 

  12. Garrison, K.A., Scheinost, D., Finn, E.S., Shen, X., Todd, R., Program, N.: The (in)stability of functional brain network measures across thresholds. NeuroImage 118, 651–661 (2016). https://doi.org/10.1016/j.neuroimage.2015.05.046

  13. Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from functional MRI data using independent component analysis V.D. J. Neurotrauma 32, 655–659 (2015). https://doi.org/10.1089/neu.2014.3723

  14. Faes, L., et al.: A Framework for the time- and frequency-domain assessment of high-order interactions in brain and physiological networks. XX, pp. 1–11 (2022)

    Google Scholar 

  15. Stramaglia, S., Scagliarini, T., Daniels, B.C., Marinazzo, D.: Quantifying dynamical high-order interdependencies from the O-information: an application to neural spiking dynamics. Front. Physiol. 11, 1–11 (2021). https://doi.org/10.3389/fphys.2020.595736

    Article  Google Scholar 

  16. Rosas, F.E., Mediano, P.A.M., Gastpar, M., Jensen, H.J.: Quantifying high-order interdependencies via multivariate extensions of the mutual information. Phys. Rev. E. 100, 32305 (2019). https://doi.org/10.1103/PhysRevE.100.032305

    Article  Google Scholar 

  17. Elam, J.S., Van Essen, D.: WU-Minn HCP 1200 subjects data release reference manual. Encycl. Comput. Neurosci. 2017, 35 (2013). https://doi.org/10.1007/978-1-4614-7320-6_592-1

    Article  Google Scholar 

  18. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project and for the WU-Minn HCP consortium. Neuroimage 80, 105–12404 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.127.The

    Article  Google Scholar 

  19. Fu, Z., Du, Y., Calhoun, V.D.: The Dynamic Functional Network Connectivity Analysis Framework. Engineering 5, 190–193 (2019). https://doi.org/10.1016/j.eng.2018.10.001

    Article  Google Scholar 

  20. Sako, Ü., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Andrew, M., Calhoun, V.D.: A method for evaluating dynamic functional network connectivity and task-modulation. App. Schizophrenia 23, 351–366 (2010). https://doi.org/10.1007/s10334-010-0197-8.A

    Article  Google Scholar 

  21. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  Google Scholar 

  22. Faes, L., Marinazzo, D., Stramaglia, S.: Multiscale information decomposition: exact computation for multivariate Gaussian processes. Entropy 19, 1–18 (2017). https://doi.org/10.3390/e19080408

    Article  Google Scholar 

  23. Barrett, A.B., Barnett, L., Seth, A.K.: Multivariate granger causality and generalized variance. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 81, (2010). https://doi.org/10.1103/PhysRevE.81.041907

  24. over, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, New York (2012)

    Google Scholar 

  25. Pernice, R., et al.: Multivariate correlation measures reveal structure and strength of brain – body physiological networks at rest and during mental stress. Front Neurosci. 14 (2021). https://doi.org/10.3389/fnins.2020.602584

  26. Paluš, M.: Detecting phase synchronization in noisy systems. Phys. Lett. Sect. A Gen. Solid State Phys. 235, 341–351 (1997). https://doi.org/10.1016/S0375-9601(97)00635-X

  27. Raichle, M.E.: The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015). https://doi.org/10.1146/annurev-neuro-071013-014030

    Article  Google Scholar 

  28. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U. S. A. 100, 253–258 (2003). https://doi.org/10.1073/pnas.0135058100

    Article  Google Scholar 

  29. Wu, G.R., Marinazzo, D.: Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150190 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Comelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valenti, S. et al. (2022). Assessing High-Order Interdependencies Through Static O-Information Measures Computed on Resting State fMRI Intrinsic Component Networks. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics