Skip to main content

Place Cell’s Computational Model

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

Hippocampal Place Cells play a pivotal role in spatial navigation. These cells have the particular characteristic of firing at a low rate during navigation throughout most of the environment, except when the animal is within a restricted spatial region called place field. The biophysical mechanisms underlying their formation or remapping following external sensory inputs are poorly understood. Recent experimental evidence clearly showed that, in the CA1 hippocampal region, the interaction between a properly timed association of inputs from the entorhinal cortex and the CA3 region can induce a novel place field formation. On CA1 pyramidal neurons, these different inputs are spatially segregated: the input from entorhinal cortex targets the most distal apical dendritic regions, while the CA3 input arrives onto proximal dendrites. The conditions under which this interaction can explain the formation of a place field in a CA1 pyramidal neuron are not fully understood. In this work, we present a series of simulations using a morphologically and biophysically detailed model of a CA1 pyramidal neuron. We tested the model by simulating a mouse random spatial navigation in a small room with objects. Following a reward signal activated during the navigation in the distal dendrites, as a forward traveling depolarization envelope, the neuron was able to selectively potentiate only the synapses coding for the object present in the visual field. Subsequent navigation through the same environment resulted in the neuron firing as expected for a place cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burgess, N., O’Keefe, J.: Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus 6, 749–762 (1996). https://doi.org/10.1002/(sici)1098-1063(1996)6:6%3c749::aid-hipo16%3e3.0.co;2-0

    Article  Google Scholar 

  2. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971). https://doi.org/10.1016/0006-8993(71)90358-1

  3. Fox, S.E., Ranck, J.B.: Localization and anatomical identification of theta and complex spike cells in dorsal hippocampal formation of rats. Exp Neurol. 49, 299–313 (1975). https://doi.org/10.1016/0014-4886(75)90213-7

    Article  Google Scholar 

  4. Hazama, Y., Tamura, R.: Effects of self-locomotion on the activity of place cells in the hippocampus of a freely behaving monkey. Neurosci Lett. 701, 32–37 (2019). https://doi.org/10.1016/J.NEULET.2019.02.009

    Article  Google Scholar 

  5. Hazama, Y., Tamura, R.: Data on the activity of place cells in the hippocampal CA1 subfield of a monkey performing a shuttling task. Data Brief. 26 (2019). https://doi.org/10.1016/J.DIB.2019.104467

  6. Ekstrom, A.D., et al.: Cellular networks underlying human spatial navigation. Nature 425, 184–187 (2003). https://doi.org/10.1038/NATURE01964

    Article  Google Scholar 

  7. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Clarendon Press, Oxford (1978)

    Google Scholar 

  8. Wilson, M.A., McNaughton, B.L.: Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993). https://doi.org/10.1126/SCIENCE.8351520

    Article  Google Scholar 

  9. Alme, C.B., Miao, C., Jezek, K., Treves, A., Moser, E.I., Moser, M.B.: Place cells in the hippocampus: eleven maps for eleven rooms. Proc. Natl. Acad. Sci. U S A. 111, 18428–18435 (2014). https://doi.org/10.1073/PNAS.1421056111

    Article  Google Scholar 

  10. Muller, R.U., Kubie, J.L.: The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987). https://doi.org/10.1523/JNEUROSCI.07-07-01951.1987

    Article  Google Scholar 

  11. Fenton, A.A., Csizmadia, G., Muller, R.U.: Conjoint control of hippocampal place cell firing by two visual stimuli. I. The effects of moving the stimuli on firing field positions. J. Gen. Physiol. 116, 191–209 (2000). https://doi.org/10.1085/JGP.116.2.191

  12. Sharp, P.E.: Computer simulation of hippocampal place cells. Psychobiology 19(2), 103–115 (2013). https://doi.org/10.3758/BF03327179

  13. Zipser, D.: Biologically plausible models of place recognition and goal location. In: McClelland, J.L., Rumelhart, D.E., PDP Research Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 2, pp. 432–470. MIT Press, Cambridge (1986)

    Google Scholar 

  14. Bittner, K.C., et al.: Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015). https://doi.org/10.1038/NN.4062

    Article  Google Scholar 

  15. Migliore, M., Novara, G., Tegolo, D.: Single neuron binding properties and the magical number 7. Hippocampus 18, 1122–1130 (2008). https://doi.org/10.1002/HIPO.20480

    Article  Google Scholar 

  16. Migliore, M., Cannia, C., Canavier, C.C.: A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling. J. Neurophysiol. 99, 2703–2707 (2008). https://doi.org/10.1152/JN.00024.2008

    Article  Google Scholar 

  17. Hoffman, D.A., Magee, J.C., Colbert, C.M., Johnston, D.: K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997). https://doi.org/10.1038/43119

    Article  Google Scholar 

  18. Magee, J.C.: Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998). https://doi.org/10.1523/JNEUROSCI.18-19-07613.1998

    Article  Google Scholar 

  19. Migliore, M.: On the integration of subthreshold inputs from Perforant Path and Schaffer Collaterals in hippocampal CA1 pyramidal neurons. J Comput. Neurosci. 14, 185–192 (2003). https://doi.org/10.1023/A:1021906818333

    Article  Google Scholar 

  20. Gasparini, S., Migliore, M., Magee, J.C.: On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004). https://doi.org/10.1523/JNEUROSCI.2520-04.2004

    Article  Google Scholar 

  21. Bianchi, D., et al.: Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit. Hippocampus 24, 165–177 (2014). https://doi.org/10.1002/HIPO.22212

    Article  Google Scholar 

  22. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005). https://doi.org/10.1038/NATURE03687

    Article  Google Scholar 

  23. Fried, I., MacDonald, K.A., Wilson, C.L.: Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997). https://doi.org/10.1016/S0896-6273(00)80315-3

    Article  Google Scholar 

  24. Kornblith, S., Quian Quiroga, R., Koch, C., Fried, I., Mormann, F.: Persistent single-neuron activity during working memory in the human medial temporal lobe. Curr. Biol. 27, 1026–1032 (2017). https://doi.org/10.1016/J.CUB.2017.02.013

    Article  Google Scholar 

  25. Migliore, M., de Blasi, I., Tegolo, D., Migliore, R.: A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. Neural. Netw. 24, 552–559 (2011). https://doi.org/10.1016/J.NEUNET.2011.01.001

    Article  Google Scholar 

  26. Kastellakis, G., Silva, A.J., Poirazi, P.: Linking memories across time via neuronal and dendritic overlaps in model neurons with active dendrites. Cell Rep. 17, 1491–1504 (2016). https://doi.org/10.1016/J.CELREP.2016.10.015

    Article  Google Scholar 

  27. Lisman, J.: Working memory: the importance of theta and gamma oscillations. Curr Biol. 20 (2010). https://doi.org/10.1016/J.CUB.2010.04.011

  28. Fuentemilla, L., Penny, W.D., Cashdollar, N., Bunzeck, N., Düzel, E.: Theta-coupled periodic replay in working memory. Curr. Biol. 20, 606–612 (2010). https://doi.org/10.1016/J.CUB.2010.01.057

    Article  Google Scholar 

  29. Jensen, O., Kaiser, J., Lachaux, J.P.: Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 30, 317–324 (2007). https://doi.org/10.1016/J.TINS.2007.05.001

    Article  Google Scholar 

  30. Gray, C.M.: Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1, 11–38 (1994). https://doi.org/10.1007/BF00962716

    Article  Google Scholar 

  31. Hartley, T., Burgess, N., Lever, C., Cacucci, F., O’Keefe, J.: Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10, 369–379 (2000). https://doi.org/10.1002/1098-1063(2000)10:4%3c369::aid-hipo3%3e3.0.co;2-0

    Article  Google Scholar 

  32. Barry, C., Burgess, N.: Learning in a geometric model of place cell firing. Hippocampus 17, 786–800 (2007). https://doi.org/10.1002/HIPO.20324

    Article  Google Scholar 

  33. Yoder, R.M., Clark, B.J., Taube, J.S.: Origins of landmark encoding in the brain. Trends Neurosci. 34, 561–571 (2011). https://doi.org/10.1016/J.TINS.2011.08.004

    Article  Google Scholar 

  34. Knierim, J.J., Rao, G.: Distal landmarks and hippocampal place cells: effects of relative translation versus rotation. Hippocampus 13, 604–617 (2003). https://doi.org/10.1002/HIPO.10092

    Article  Google Scholar 

  35. Knierim, J.J., Kudrimoti, H.S., McNaughton, B.L.: Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 1648–1659 (1995). https://doi.org/10.1523/JNEUROSCI.15-03-01648.1995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Comelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzara, C., Comelli, A., Migliore, M. (2022). Place Cell’s Computational Model. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics