Skip to main content

Automatic Liver Segmentation in Pre-TIPS Cirrhotic Patients: A Preliminary Step for Radiomics Studies

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

The aim of this study is to present a deep learning (DL) algorithm for accurate liver delineation in high-resolution computed tomography (CT) images of pre-transjugular intrahepatic portosystemic shunt (TIPS) cirrhotic patients. In this way, we aim to improve the methodology performed by medical physicians in radiomics studies where the use of operator-independent segmentation methods is mandatory to correctly identify the target and to obtain accurate predictive models.

Two DL models were investigated: UNet, the most widely used DL network for biomedical image segmentation, and the innovative customized efficient neural network (C-ENet). 111 patients with liver contrast-enhanced CT examinations before TIPS procedure were considered. The performance of the two DL networks was evaluated in terms of the similarity of their segmentations to the gold standard.

The results show that C-ENet can be used to obtain accurate (dice similarity coefficient = 87.70%) segmentation of the liver region outperforming UNet (dice similarity coefficient = 85.33%). In conclusion, we demonstrated that DL can be efficiently applied to rapidly segment cirrhotic liver images, without any radiologist supervision, to produce user-independent results useful for subsequent radiomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roerecke, M., et al.: Alcohol consumption and risk of liver cirrhosis: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1574–1586 (2019). https://doi.org/10.14309/ajg.0000000000000340

  2. Ginès, P., Krag, A., Abraldes, J.G., Solà, E., Fabrellas, N., Kamath, P.S.: Liver cirrhosis. Lancet 398, 1359–1376 (2021). https://doi.org/10.1016/S0140-6736(21)01374-X

    Article  Google Scholar 

  3. Smith, A.J., Baumgartner, K., Bositis, C.M.: Cirrhosis: diagnosis and management. Am. Fam. Physician 100(12), 759–770 (2019)

    Google Scholar 

  4. Fan, Y., Li, Y., Chu, Y., Liu, J., Cui, L., Zhang, D.: Toll-like receptors recognize intestinal microbes in liver cirrhosis. Front. Immunol. 12, 99 (2021). https://doi.org/10.3389/fimmu.2021.608498

    Article  Google Scholar 

  5. Lai, M., Afdhal, N.H.: Liver fibrosis determination. Gastroenterol. Clin. North Am. 48, 281–289 (2019). https://doi.org/10.1016/j.gtc.2019.02.002

    Article  Google Scholar 

  6. De Wit, K., et al.: Prevention of hepatic encephalopathy by administration of rifaximin and lactulose in patients with liver cirrhosis undergoing placement of a transjugular intrahepatic portosystemic shunt (TIPS): a multicentre randomised, double blind, placebo controlled t. BMJ Open Gastroenterol. 7, (2020). https://doi.org/10.1136/bmjgast-2020-000531

  7. Rajesh, S., et al.: Transjugular intrahepatic portosystemic shunt in cirrhosis: an exhaustive critical update. World J. Gastroenterol. 26, 5561–5596 (2020). https://doi.org/10.3748/wjg.v26.i37.5561

    Article  Google Scholar 

  8. Sun, S.H., et al.: Predicting death or recurrence of portal hypertension symptoms after TIPS procedures. Eur. Radiol. 32, 3346–3357 (2022). https://doi.org/10.1007/s00330-021-08437-0

  9. Salvaggio, G., et al.: Deep learning network for segmentation of the prostate gland with median lobe enlargement in T2-weighted MR images: comparison with manual segmentation method. Curr. Probl. Diagn. Radiol. (2021). https://doi.org/10.1067/j.cpradiol.2021.06.006

    Article  Google Scholar 

  10. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136–150 (2016). https://doi.org/10.1002/ima.22168

    Article  Google Scholar 

  11. Laudicella, R., et al.: Artificial neural networks in cardiovascular diseases and its potential for clinical application in molecular imaging. Curr. Radiopharm. 14, 209–219 (2020). https://doi.org/10.2174/1874471013666200621191259

    Article  Google Scholar 

  12. Cutaia, G., et al.: Radiomics and prostate MRI: current role and future applications. J. Imaging 7, 34 (2021). https://doi.org/10.3390/jimaging7020034

    Article  Google Scholar 

  13. Salvaggio, G., et al.: Deep learning networks for automatic retroperitoneal sarcoma segmentation in computerized tomography. Appl. Sci. 12, 1665 (2022). https://doi.org/10.3390/app12031665

    Article  Google Scholar 

  14. Cuocolo, R., et al.: Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J. Magn. Reson. Imaging 54, 452–459 (2021). https://doi.org/10.1002/jmri.27585

    Article  Google Scholar 

  15. Chen, C., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. (2020). https://doi.org/10.3389/fcvm.2020.00025

  16. Choy, G., et al.: Current applications and future impact of machine learning in radiology. Radiology 288, 318–328 (2018). https://doi.org/10.1148/radiol.2018171820

    Article  Google Scholar 

  17. Mitrea, D., Badea, R., Mitrea, P., Brad, S., Nedevschi, S.: Hepatocellular carcinoma automatic diagnosis within ceus and b-mode ultrasound images using advanced machine learning methods. Sensors. 21, 1–31 (2021). https://doi.org/10.3390/s21062202

    Article  Google Scholar 

  18. Zheng, R., et al.: Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning. Phys. Med. Biol. 66, 085014 (2021). https://doi.org/10.1088/1361-6560/abf2f8

    Article  Google Scholar 

  19. Perez, A.A., et al.: Deep learning CT-based quantitative visualization tool for liver volume estimation: defining normal and hepatomegaly. Radiology 302, 336–342 (2022). https://doi.org/10.1148/radiol.2021210531

    Article  Google Scholar 

  20. Stefano, A., Comelli, A.: Customized efficient neural network for covid-19 infected region identification in CT images. J. Imaging. 7, 131 (2021). https://doi.org/10.3390/jimaging7080131

    Article  Google Scholar 

  21. Stefano, A., et al.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics 10, 306. 10, 306 (2020). https://doi.org/10.3390/DIAGNOSTICS10050306

  22. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, pp. 1–10 (2016)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  25. Alongi, P., et al.: Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595–4605 (2021). https://doi.org/10.1007/s00330-020-07617-8

    Article  Google Scholar 

  26. Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in positron emission tomography oncological studies. Pattern Recogn. Image Anal. 28, 106–113 (2018). https://doi.org/10.1134/S1054661818010054

    Article  Google Scholar 

  27. Hu, Y., et al.: A prediction model for 30-day deaths of cirrhotic patients in intensive care unit hospitalization. Med. (United States). 101, E28752 (2022). https://doi.org/10.1097/MD.0000000000028752

  28. Groendahl, A.R., et al.: A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers. Phys. Med. Biol. 66 (2021). https://doi.org/10.1088/1361-6560/abe553

  29. Comelli, A., et al.: Deep learning approach for the segmentation of aneurysmal ascending aorta. Biomed. Eng. Lett. 11(1), 15–24 (2020). https://doi.org/10.1007/s13534-020-00179-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mamone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavone, A.M. et al. (2022). Automatic Liver Segmentation in Pre-TIPS Cirrhotic Patients: A Preliminary Step for Radiomics Studies. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics