Abstract
The aim of this study is to present a deep learning (DL) algorithm for accurate liver delineation in high-resolution computed tomography (CT) images of pre-transjugular intrahepatic portosystemic shunt (TIPS) cirrhotic patients. In this way, we aim to improve the methodology performed by medical physicians in radiomics studies where the use of operator-independent segmentation methods is mandatory to correctly identify the target and to obtain accurate predictive models.
Two DL models were investigated: UNet, the most widely used DL network for biomedical image segmentation, and the innovative customized efficient neural network (C-ENet). 111 patients with liver contrast-enhanced CT examinations before TIPS procedure were considered. The performance of the two DL networks was evaluated in terms of the similarity of their segmentations to the gold standard.
The results show that C-ENet can be used to obtain accurate (dice similarity coefficient = 87.70%) segmentation of the liver region outperforming UNet (dice similarity coefficient = 85.33%). In conclusion, we demonstrated that DL can be efficiently applied to rapidly segment cirrhotic liver images, without any radiologist supervision, to produce user-independent results useful for subsequent radiomics studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Roerecke, M., et al.: Alcohol consumption and risk of liver cirrhosis: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1574–1586 (2019). https://doi.org/10.14309/ajg.0000000000000340
Ginès, P., Krag, A., Abraldes, J.G., Solà, E., Fabrellas, N., Kamath, P.S.: Liver cirrhosis. Lancet 398, 1359–1376 (2021). https://doi.org/10.1016/S0140-6736(21)01374-X
Smith, A.J., Baumgartner, K., Bositis, C.M.: Cirrhosis: diagnosis and management. Am. Fam. Physician 100(12), 759–770 (2019)
Fan, Y., Li, Y., Chu, Y., Liu, J., Cui, L., Zhang, D.: Toll-like receptors recognize intestinal microbes in liver cirrhosis. Front. Immunol. 12, 99 (2021). https://doi.org/10.3389/fimmu.2021.608498
Lai, M., Afdhal, N.H.: Liver fibrosis determination. Gastroenterol. Clin. North Am. 48, 281–289 (2019). https://doi.org/10.1016/j.gtc.2019.02.002
De Wit, K., et al.: Prevention of hepatic encephalopathy by administration of rifaximin and lactulose in patients with liver cirrhosis undergoing placement of a transjugular intrahepatic portosystemic shunt (TIPS): a multicentre randomised, double blind, placebo controlled t. BMJ Open Gastroenterol. 7, (2020). https://doi.org/10.1136/bmjgast-2020-000531
Rajesh, S., et al.: Transjugular intrahepatic portosystemic shunt in cirrhosis: an exhaustive critical update. World J. Gastroenterol. 26, 5561–5596 (2020). https://doi.org/10.3748/wjg.v26.i37.5561
Sun, S.H., et al.: Predicting death or recurrence of portal hypertension symptoms after TIPS procedures. Eur. Radiol. 32, 3346–3357 (2022). https://doi.org/10.1007/s00330-021-08437-0
Salvaggio, G., et al.: Deep learning network for segmentation of the prostate gland with median lobe enlargement in T2-weighted MR images: comparison with manual segmentation method. Curr. Probl. Diagn. Radiol. (2021). https://doi.org/10.1067/j.cpradiol.2021.06.006
Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136–150 (2016). https://doi.org/10.1002/ima.22168
Laudicella, R., et al.: Artificial neural networks in cardiovascular diseases and its potential for clinical application in molecular imaging. Curr. Radiopharm. 14, 209–219 (2020). https://doi.org/10.2174/1874471013666200621191259
Cutaia, G., et al.: Radiomics and prostate MRI: current role and future applications. J. Imaging 7, 34 (2021). https://doi.org/10.3390/jimaging7020034
Salvaggio, G., et al.: Deep learning networks for automatic retroperitoneal sarcoma segmentation in computerized tomography. Appl. Sci. 12, 1665 (2022). https://doi.org/10.3390/app12031665
Cuocolo, R., et al.: Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J. Magn. Reson. Imaging 54, 452–459 (2021). https://doi.org/10.1002/jmri.27585
Chen, C., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. (2020). https://doi.org/10.3389/fcvm.2020.00025
Choy, G., et al.: Current applications and future impact of machine learning in radiology. Radiology 288, 318–328 (2018). https://doi.org/10.1148/radiol.2018171820
Mitrea, D., Badea, R., Mitrea, P., Brad, S., Nedevschi, S.: Hepatocellular carcinoma automatic diagnosis within ceus and b-mode ultrasound images using advanced machine learning methods. Sensors. 21, 1–31 (2021). https://doi.org/10.3390/s21062202
Zheng, R., et al.: Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning. Phys. Med. Biol. 66, 085014 (2021). https://doi.org/10.1088/1361-6560/abf2f8
Perez, A.A., et al.: Deep learning CT-based quantitative visualization tool for liver volume estimation: defining normal and hepatomegaly. Radiology 302, 336–342 (2022). https://doi.org/10.1148/radiol.2021210531
Stefano, A., Comelli, A.: Customized efficient neural network for covid-19 infected region identification in CT images. J. Imaging. 7, 131 (2021). https://doi.org/10.3390/jimaging7080131
Stefano, A., et al.: Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT. Diagnostics 10, 306. 10, 306 (2020). https://doi.org/10.3390/DIAGNOSTICS10050306
Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, pp. 1–10 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44
Alongi, P., et al.: Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 31(7), 4595–4605 (2021). https://doi.org/10.1007/s00330-020-07617-8
Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in positron emission tomography oncological studies. Pattern Recogn. Image Anal. 28, 106–113 (2018). https://doi.org/10.1134/S1054661818010054
Hu, Y., et al.: A prediction model for 30-day deaths of cirrhotic patients in intensive care unit hospitalization. Med. (United States). 101, E28752 (2022). https://doi.org/10.1097/MD.0000000000028752
Groendahl, A.R., et al.: A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers. Phys. Med. Biol. 66 (2021). https://doi.org/10.1088/1361-6560/abe553
Comelli, A., et al.: Deep learning approach for the segmentation of aneurysmal ascending aorta. Biomed. Eng. Lett. 11(1), 15–24 (2020). https://doi.org/10.1007/s13534-020-00179-0
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pavone, A.M. et al. (2022). Automatic Liver Segmentation in Pre-TIPS Cirrhotic Patients: A Preliminary Step for Radiomics Studies. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-13321-3_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13320-6
Online ISBN: 978-3-031-13321-3
eBook Packages: Computer ScienceComputer Science (R0)