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Abstract.  

 

Counter-terrorism and its preventive and response actions are crucial factors in 

security planning and protection of mass events, soft targets and critical infra-

structures in urban environments. This paper presents a comprehensive Decision 

Support System developed under the umbrella of the S4AllCitites project, that 

can be integrated with legacy systems deployed in the Smart Cities. The system 

includes urban pedestrian and vehicular evacuation, considering ad-hoc predic-

tive models of the evolution of incendiary and mass shooting attacks in conjunc-

tion with a probabilistic model for threat assessment in case of improvised explo-

sive devices. The main objective of the system is to provide decision support to 

public or private security operators in the planning and real time phases in the 

prevention or intervention against a possible attack, providing information on 

evacuation strategies, the probability or expected impact of terrorist threats and 

the state of the traffic network in normal or unusual conditions allowing the emer-

gency to be managed throughout its evolution. 

Keywords: Security and Safety; Evacuation; Terrorism; Threats; Fire and 

Smoke; Traffic; Simulation; Decision Support System 

1 Introduction 

International terrorism has many dimensions and characteristics depending on fac-

tors such as the historical and geographical context, political links or factors related to 

different terrorist groups and organizations (Tuman, 2009). Today security and terror-

ism are one of the most widespread problems that requires the attention of law enforce-

ment agencies, policy makers and political institutions due to the social and economic 
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impact it generates. Despite this dependence on factors, terrorist attacks have the pur-

pose of creating great harm and consternation in the population. Cities are a spotlight 

as they cluster large populations in small areas susceptible to terrorist attacks. There-

fore, in the field of anti-terrorist urban security, and more broadly in the context of mass 

events, critical infrastructures and soft targets, it is mandatory to have adequate plan-

ning and response strategies to deal with such emergencies. Hence, this paper proposes 

a Decision Support System (DSS) that can be used during planning and response phases 

anticipating terrorist threats and while helping to address emergency management is-

sues within the context of smart cities. 

According to the (Global Terrorism Database™ (GTD), 2021) more than half of the 

attacks worldwide are Improvised Explosive Devices (IED), mass shooting, arsons or 

incendiary/smoke devices attacks. The expected evolution of this kind of attacks 

(Martin, 2016) (EUROPOL, 2021) are the necessary foundation for the development of 

models that can help to minimize their consequences.  

More specifically, between 2010 and 2019 29.4% of terrorist attacks were targeted 

against the population (Global Terrorism Database™ (GTD), 2021), with cities being 

a major attraction for the terrorists. In this context there is an increment of smart cities 

that use Information and Communication Technologies (ICT) to increase operational 

efficiency, share information with the public and improve both the quality of govern-

ment services and citizen welfare. An important point is that smart cities also need to 

ensure a secure and safe physical and digital ecosystem for the well-being of citizens. 

Therefore, it is mandatory to utilize the capabilities already available in smart cities to 

improve security and safety. These include, for example, anomaly detection, authenti-

cation and identification of individuals, threat localisation, behavioural profiling, sus-

pect tracking, traffic monitoring, emergency management and many other capabilities 

related with awareness, prevention and response (Laufs, Borrion, & Bradford, 2020). 

These capabilities have been studied from different perspectives leading to a wide 

range of results including threats and individuals detection (Chackravarthy, Schmitt, & 

Yang, 2018) (Bellini, Cenni, Nesi, & Paoli, 2017), screening and tracking (Brust, y 

otros, 2017) (Anees & Kumar, 2017), recognition-based authentication (Balla & 

Jadhao, 2018) (Boukerche, Siddiqui, & Mammeri, 2017) or the improvement of legacy 

systems deployed throughout the city endowing them with intelligence (Zingoni, Diani, 

& Corsini, 2017) (Zhou, Saha, & Rangarajan, 2015). However, due to our particular 

approach, we must emphasise that there are hardly any studies (Dbouk, Mcheick, & 

Sbeity, 2014) (Bonatsos, Middleton, Melas, & Sabeur, 2013) that propose a compre-

hensive DSS involving at the same time emergency management, real-time decision 

support and forecasting of threats evolution and impact of most common terrorist at-

tacks. The closest in these terms to the existing literature is focused on the management 

of common crimes such as vandalism and violence, both in terms of management 

(Fernández, et al., 2013), information systems (Truntsevsky, Lukiny, Sumachev, & 

Kopytova, 2018), unusual traffic management (Hartama, et al., 2017), evacuation 

(Zhang, et al., 2018) and to a lesser extent on the prediction of events such as robbery 

or homicide (Noor, Nawawi, & Ghazali, 2013) (Araujo, Cacho, Thome, Medeiros, & 

Borges, 2017).  
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Thus, this study jointly addresses the facets of predicting and assess the impact of 

terrorist attacks (IED, mass shooting and arson), together with the management of 

emergency situations in terms of pedestrian and vehicular intervention, evacuation and 

monitoring by proposing a comprehensive conceptual and computational model that 

implements a DSS. This system involves different data sources and computer simula-

tions providing support to decision makers/operators to make appropriate planning, 

management or response decision (Turban, 1995). 

2 Material & Method 

2.1 Conceptual Model 

On the basis of the initial definition of a smart city, a three-layers structure can be used 

to formalise the mathematical model of the proposed DSS (Decision Support System), 

see Fig. 1.  

 

 

Fig. 1. Conceptual model – Mathematical modelled schema of layer in Smart Cities. 

Threat Assessment Layer: Comprises a set of soft targets, crowded areas and infrastruc-

tures 𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑛} where security monitoring is desired. A soft-target can be de-

fined as 𝑠𝑘 = {𝐵, 𝑃, 𝐴, 𝐷, 𝑂}, where 𝐵 = {(𝜙0, 𝜃0), (𝜙1, 𝜃1), … , (𝜙𝑘, 𝜃𝑘)} represents an 

enclosed and geographically defined area (longitude, latitude), 𝑃 is the spatial distribu-

tion of people, 𝐴 is the security assets deployed (e.g. controls, cameras or patrols) and 

𝐷 𝑎nd 𝑂 is the set of safe areas and obstacles inside the scenario that are defined by 

geographical coordinates. Threats being monitored in these areas are therefore defined 

as 𝑇𝑖 = {𝐿, 𝐶}, where 𝐿 = (𝜙, 𝜃) is the location and 𝐶 ∈
{𝐴𝑟𝑠𝑜𝑛, 𝑆𝑚𝑜𝑘𝑒, 𝐼𝐸𝐷, 𝑊𝑒𝑎𝑝𝑜𝑛} is the category. 

Pedestrian Movement Layer: Topological definition of pedestrian transitable areas is 

replicated through the graph 𝐺𝑝 = {𝑁, 𝐸}, which is arranged by 𝑁 = {𝑛0, 𝑛1, … , 𝑛𝑛} set 

of nodes and 𝐸 = {𝑒0, 𝑒1, … , 𝑒𝑚} set of edges. Each node 𝑛𝑖 = {𝐿, 𝑑, 𝑠} is defined by its 

geographic location and occupant density as well as its current status 𝑠 ∈
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{𝑃𝑎𝑠𝑠𝑎𝑏𝑙𝑒, 𝐼𝑚𝑝𝑎𝑠𝑠𝑎𝑏𝑙𝑒, 𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒, 𝑆𝑎𝑓𝑒}. Likewise, each edge 𝑒𝑖 = {𝑑, 𝑛𝑜, 𝑛𝑑 , 𝑓} 

represents transitable zones and it is defined by people density, origin and destination 

nodes and available flow. 

Traffic Layer: Traffic network is represented through the graph 𝐺𝑡 = {𝑉, 𝐸}, where 𝑉 =
{𝑣0, 𝑣1, … , 𝑣𝑛} are the vehicular transit reference points associated with physical loca-

tions and 𝐸 = {𝑒0, 𝑒1, … , 𝑒𝑚} represents the reachability associations similar to the pe-

destrian layer but within a traffic environment where the density and flow measure-

ments represent vehicles instead of people. For the generation of traffic profiles, this 

layer considers the different usual zones 𝑍 of origin and destination of trips, which in 

turn are related by proximity to a node of the traffic network, generating a set of paths 𝑃 

between them and an origin-destination weighted matrix 𝑊 = 𝑍 × 𝑍. 

 

 

Fig. 2. Conceptual model – Graphical representation of mathematical layer-based model. From 

left to right: Threat Assessment Layer, pedestrian Movement Layer and Traffic Layer. 

Threat Assessment Layer 

This layer assesses the threats and possible impacts/consequences of three type of 

attacks: 

1. Arson and Smoke Bomb: Fire Dynamics Simulator (McGrattan, et al., 2017)  is used 

for the most likely locations of this type of attacks by simulating several scenarios 

changing the actual combustion parameters, different wind and fire loads. The gen-

erated results providing artificial measurements 𝑀𝑓(𝑠𝑖) = {𝑚0, 𝑚1, … , 𝑚𝑘}, (e.g. 

visibility, Fractional Effective Dose (FED)) are classified and stored in a structured 

way for further use. 

 

2. Improvise Explosive Device (IED): This approach is based on (Cuesta, Abreu, 

Balboa, & Alvear, 2019). The boundary box of each soft-target 𝑠𝑘 is calculated and 

subdivided into small regions shaping a fine grid of squared cells. For each cell 𝑐𝑖𝑗  

within the grid, the risk function is calculated as follows: 

 

𝑅(𝑠𝑘, 𝑐𝑖𝑗) = 𝑤𝑑𝑡 ⋅ 𝑑𝑡(𝑐𝑖𝑗 , 𝐸) + 𝑤𝑑𝑎 ⋅ 𝑑𝑎(𝑐𝑖𝑗 , 𝐴) + 𝑤𝑑𝑟 ⋅ 𝑑𝑟(𝑐𝑖𝑗 , 𝐵) + 𝑤𝑝 ⋅ 𝑝(𝑐𝑖𝑗 , 𝑃), 

 

where the functions studied have associated weights {𝑤𝑑𝑡 , 𝑤𝑑𝑎 , 𝑤𝑑𝑟 , 𝑤𝑝} that can be 

modified (e.g. to give more weight to one or another parameter) but, as a general 
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rule, balance the risk function. The rest of the functions that are measured in the 

equation are: 

─ 𝑑𝑡(𝑐𝑖𝑗 , 𝐸) → Inverse (1-p) normalized distance from cell 𝑐𝑖𝑗  to the nearest exit 

(negative correlation). 

─ 𝑑𝑎(𝑐𝑖𝑗 , 𝐴) → Inverse normalized distance from cell 𝑐𝑖𝑗  to the nearest asset. 

─ 𝑑𝑟(𝑐𝑖𝑗 , 𝐵) → Normalized radial distance from cell 𝑐𝑖𝑗  to the boundary box 

(positive correlation). 

─ 𝑝(𝑐𝑖𝑗 , 𝑃) → Normalized population density inside cell 𝑐𝑖𝑗 . 

After processing all the cells, a matrix 𝑀𝑟(𝑠𝑖) of risk values is provided which is 

associated with the threat level, resulting in a probability map with critical locations 

of IEDs for each soft-target. 

 

3. Mass Shooting Attack (MSA): The soft-target space 𝑠𝑖 is discretized through uni-

formly distributed reference points and mapped onto nodes of a reachability directed 

graph 𝐺 = {𝑁, 𝐸}, 𝑁 = {𝑛0, 𝑛1, … , 𝑛𝑘} for pathing purposes. The optimal path (i.e. 

minimum distance) from each starting location 𝑃 = {𝑝0, 𝑝1, … , 𝑝𝑚} is calculated, 

considering the location (static and/or dynamic) of the attacker(s) 𝐴𝑙, by means of 

Backtracking approach with associated cost function: 

 

𝑐𝑓(𝑛𝑖 , 𝑛𝑗)

=

𝑑𝑚𝑒𝑎𝑛(𝑛𝑗 , 𝐸)

max𝑛
𝑛𝑔ℎ𝑏𝑠(𝑛𝑖)

(𝑑𝑚𝑒𝑎𝑛(𝑛, 𝐸)) 
+

𝑑𝑚𝑖𝑛(𝑛𝑗, 𝐸)

max𝑛
𝑛𝑔ℎ𝑏𝑠(𝑛𝑖)

(𝑑𝑚𝑖𝑛(𝑛, 𝐸))
+

𝑢(𝑛𝑗)

max𝑛
𝑛𝑔ℎ𝑏𝑠(𝑛𝑖)

(𝑢(𝑛))

𝑑𝑚𝑒𝑎𝑛(𝑛𝑗, 𝐴𝑙)

max𝑛
𝑛𝑔ℎ𝑏𝑠(𝑛𝑖)

(𝑑𝑚𝑒𝑎𝑛(𝑛𝑗, 𝐴𝑙))

 

 

where function 𝑛𝑔ℎ𝑏𝑠(𝑛𝑖) represents the neighbours of a particular node, function 

𝑑𝑚𝑒𝑎𝑛/𝑚𝑎𝑥(𝑛, 𝑆) is the mean/max distance from node 𝑛 to a set 𝑆 of locations and 

𝑢(𝑛) is the density of population in the surrounding of 𝑛. In conclusion, this function 

represents three important factors: 1) the proximity of a node to an exit/safe area, 2) 

the spatial availability of that node, and 3) the risk associated with the location of 

the attacker(s). Following these paths, a microsimulation approach is used to repre-

sent the movement and behaviour of people involved considering interactions be-

tween agents and repulsion forces between terrorists, people, scenario boundaries 

and obstacles through a Social Force model (Helbing & Molnár, 1995). A physical 

shooting dynamics approach is followed (Abreu, Cuesta, Balboa, & Alvear, 2019) 

to represent persons hit by gunfire, where the probability of being hit is estimated 

and the number of casualties 𝑀𝑣(𝑠𝑖) are calculated through a stochastic approach.  

Results generated by these methodologies can be summarised as a set of geographic 

locations linked to counter-terrorism security-related information enabling the lower 

layers to increase their level of intelligence to enable more accurate modelling results. 
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Pedestrian Movement Layer 

This layer uses threat assessment layer inputs {𝑀𝑓 , 𝑀𝑟 , 𝑀𝑣} and the pedestrian move-

ment layer the status 𝑠 for each node 𝑛𝑖 in the associated graph 𝐺𝑝 to update nodes to 

be evacuated, safe nodes and affected nodes that are impassable. Also, the occupant 

densities of the different nodes and edges of the network are updated through one of 

the following approaches depending on the capabilities of the smart city: 1) historical-

based estimates of the expected occupancy, 2) real-time monitoring of occupancy 

through cameras, Wi-Fi location devices, access controls or similar, and 3) random as-

sumptions of occupancy following expected distributions. This graph is considered as 

an active graph and it is used to produce a preliminary calculation of shortest paths 

using Dijkstra's algorithm. Its subsequent optimization is carried out considering nodes 

availability and through a weighted Multiple Criteria Decision Analysis (MCDA) for 

the assessment of conflicting nodes through its score function:  

 

𝑆(𝑛𝑖) = 𝑤𝑓 ⋅ ∑ (𝐹(𝑛))

𝑛𝑔ℎ𝑏𝑠(𝑛𝑖)

𝑛

+ 𝑤𝑐 ⋅ 𝐶(𝑛𝑖) + 𝑤𝑓𝑛 ⋅ ∑ (𝐶(𝑛)) + 𝑤𝑑𝑡 ⋅ 𝑑𝑡(𝑛𝑖)

𝑛𝑔ℎ𝑏𝑠(𝑛𝑖)

𝑛

 

where {𝑤𝑓 , 𝑤𝑐 , 𝑤𝑓𝑛 , 𝑤𝑑𝑡} are the associated weights with the MCDA and although they 

are generally assigned the same weight for each variable, they can be modified in each 

iteration of the optimisation to obtain the required results. Functions 𝐹(𝑛) and 𝐶(𝑛) 

represent the available flow for a particular node considering all the related edges and 

congestions per node. After this, a set of candidate graphs 𝑆𝑔 = {𝐺0, 𝐺1, … , 𝐺𝑘} solving 

these conflicts is generated following an iterative process and another score function is 

applied to choose the optimal graph considering the total estimation of evacuation time 

𝑡𝑒(𝐺𝑖) for each graph and the sum of individual node congestions with associated 

weights. 

𝑆(𝐺𝑖) = 𝑤𝑡 ⋅ 𝑡𝑒(𝐺𝑖) + 𝑤𝑠𝑐 ⋅ ∑ (𝐶(𝑛))

𝑛∈𝑁𝑖

𝑛

 

Once the optimal graph has been found, it becomes the active graph again, which can 

be iteratively re-optimised when the model inputs change. This model provides evacu-

ation routing, estimated egress times and mobility profiles, forecasting the number of 

people who will go to specific locations in a precise time period by determining and 

modelling the initial impact on the traffic network. 

 

Traffic Layer 

This layer provides a real time expected traffic evolution on different road sections 

according to date and time after a calibration of the network based on traffic historical 

data or data obtained through the traffic monitoring sensors deployed in the smart city. 

This calibration process starts from an uncalibrated network represented by the graph 

𝐺𝑡 which solves for the shortest paths considering availability constraints of the road 

sections and updating the 𝑊 origin-destination matrix via path-based (Jayakrishnan, 

Tsai, Prashker, & Rajadhyaksha, 1994) and bush-bashed B algorithms (Dial, 2006). 
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Accordingly, following an iterative process for origin-destination matrix adjustment 

based on gradient approach (Spiess, 1990) with some adjustments for large traffic mod-

els (Kolovský, Ježek, & Kolingerová, 2018), the model optimises the set of paths 𝑃 and 

the matrix 𝑊 based on real traffic data, paying attention to discrepancies between 

model and reality. 

2.2 System Architecture 

All these methodologies have been integrated together in a comprehensive DSS that, 

following the architecture presented in Fig. 3., assists security decisionmakers in the 

planning and response phases by leveraging some of the resources and devices already 

deployed in the smart cities. Examples of resources and devices include cameras, mon-

itoring Wi-Fi devices, access control sensors, etc.  These devices could help to estimate 

the number of people in specific locations or for example traffic monitoring systems 

make real-time simulation of unusual traffic flow more reliable.  

The architecture follows a producer-consumer approach with a centralized distrib-

uted data stream platform (Apache Kafka) for the exchange of information between 

layers. Each layer in turn is implemented as an independent module that has a Graphical 

User Interface (GUI) for configuration purposes and Application Programming Inter-

face (API) that provides on-demand service to the rest of the layers, except for fire and 

smoke simulations that, due to the computational cost, must be pre-simulated and stored 

locally for further use in specific scenarios, if needed. 

 

 

Fig. 3. DSS Architecture Overview diagram. 

3 Case Study 

After the development of the system, a comprehensive case study was performed 

based on data provided by Správa Informačnich Technologii Mĕsta Plznĕ, p.o. as part-

ner of the S4AllCities project. The soft-target scenario was the Doosan Arena stadium 

in the city of Pilsen (Czech Republic). A detailed description of the stadium and its 
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surrounding areas as well as the city of Pilsen itself was available, including infor-

mation such as: 

• Doosan Arena 3D model obtained via Lidar and RGB scanning using DJI 

Zenmuse L1 and DJI Zenmuse P1 cameras. 

• Initial locations of a possible smoke bomb as well as its device-like specifications 

(Antari Z 3000 II fog machine). 

• One-year traffic data providing a dataset of 250 million observations 

from 627 road built-in sensors, with a 90 seconds granularity in time, traffic model 

calibrated by the traffic data (Jedlicka, et al., 2020). 

• 2D map of the areas surrounding the stadium with expected attendance (11700 

spectators + 3300 people), transit locations, security assets usually deployed, car 

parks and other minor details. 

 

 

Fig. 4. City of Pilsen case study schema with initial “smoke bomb” explosive device location. 

1) Doosan Arena stadium (green), 2) Surrounding areas (red) and 3) Parking spaces (blue). 

The next step after the simulation, training and calibration of the models with the pro-

vided data, was the definition of four use cases to validate all the capabilities of the 

system listed in Table 1. 

Table. 1. Use cases considered in the case study of the city of Pilsen. 

# Scenario Feature Details 

1 Stadium interior 
Smoke 

bomb 

"Smoke bomb" type device triggering 

evacuation of the stadium 

2 

Adjacent area in 

front of the sta-

dium 

IED + MSA 

Risks of IED and MSA attacks, due to a 

possible combined attack by two perpetra-

tors. 3300 people uniform distributed in 

transitable areas are considered. 

3 

Stadium interior 

and adjacent ar-

eas 

Pedestrian 

Evacuation 

Evacuation of the stadium and neighbour-

ing areas to the car parks considering risks 
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4 Pilsen city 
Vehicular 

Evacuation 

Simulation of the impact of unusual vehi-

cle flows on the city's traffic network. 

 

 

For each of these use cases, the DSS provided results, starting by retrieving the out-

put of the smoke propagation FDS analysis (virtual smoke machine tuned on Antari Z 

3000 II fog machine, North-West wind direction) followed by the simulation of threats 

and likely impact of attacks (Fig. 5.). It is important to note that the information pro-

vided to the system operator includes the visualization of both the evolution of the dif-

ferent incidents and the data associated with the artificial scenario measurements (IED 

probability, FED, visibility and casualties). On the other hand, a simulation of pedes-

trian evacuation and traffic network unusual behaviour impact is also generated as 

shown in Fig. 5., where the operator is informed about the predicted evacuation times, 

routes, recognition of traffic/pedestrian congestion and the possibility of dynamically 

recalculating these results according to the risks deemed appropriate by, for example, 

cutting roads or blocking pedestrian evacuation nodes. 

 

 

 

 

 

 

 
 

Fig. 5. DSS Graphical user interfaces. Top-Left: Smoke propagation from FDS simulation, 

Top-Right: IED and MSA threat assessment and impact analysis, Bot-Left: Pedestrian evacua-

tion management and Bot-Right: Traffic network unusual status simulation. 

The simulation of our use cases showed that for the case study of the Doosan Arena 

stadium and the city of Pilsen the most likely dispersion of the smoke from the device 
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would be initially south-east without affecting additional exits from the stadium (after 

about 5 minutes, smoke whirls start sticking to the outer South tribune, Fig 5, Top-

Left). In the case of explosive device threat levels and potential casualties, this would 

result in the blocking of the front exits of the stadium, as a two-shooter attack in this 

area would result in an estimated of 139 casualties (dead + wounded) considering two 

minutes intervention time, in addition to considering the potential locations of explo-

sive devices, as shown in the lighter areas of the heat map in Fig. 5. As shown in Fig. 

5, the pedestrian evacuation would be directed mainly to the nearest car parks by using 

the remaining exits available in the stadium. The effect of these pedestrian evacuation 

profiles would increase in approx. 700 vehicles per the first hour in the northern traffic 

section and 900 vehicles per the first hour in the southern section, leaving a high density 

of vehicles in both directions, as shown in Fig. 5. 

4 Conclusions & Discussion 

The emerging technologies implemented in smart cities as well as new tools and meth-

odologies for computer simulation applied to threat analysis and citizen security are a 

breakthrough in the fight against terrorism. In this paper we present the methodological 

design based on three layers (threat, pedestrian and traffic layers) and implementation 

of a DSS that allows private operators, law enforcement agencies and local authorities 

to efficiently protect city soft-targets. Within this system, support is provided for both 

threat analysis and emergency management of pedestrian evacuation and its impact on 

the metropolitan traffic network. In addition, this paper presents a case study based on 

real data in the city of Pilsen where the correct functioning of the different layers that 

make up the system was evaluated and the benefits and characteristics of the system 

were presented in a more illustrative way, among which is the study of the analysis of 

the main terrorist threats, the complete management of an evacuation and the monitor-

ing for decision-making of the state of the traffic network. 

It must also be considered that this system has certain limitations that can be cor-

rected in later developments. The first of these is that it does not cover all types of 

threats within the city. Actual reports suggest that future trends (EUROPOL, 2021) in 

terrorism will evolve to simpler and less expensive (knife attacks) or combined attacks 

(cascading attacks or sabotage of critical infrastructures). Conversely, there would be 

an exploratory branch of the possible direct interaction of terrorist threats with the traf-

fic network, being able to carry out developments in the field of anti-ramming measures 

in urban planning. From our point of view, all these limitations are not an obstacle but 

rather open up future branches of research and lead to the development of increasingly 

complete security and safety systems. 
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