Skip to main content

Revitalizing Regression Tasks Through Modern Training Procedures: Applications in Medical Image Analysis for Covid-19 Infection Percentage Estimation

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13374))

Included in the following conference series:

  • 881 Accesses

Abstract

In order to establish the correct protocol for COVID-19 treatment, estimating the percentage of COVID-19 specific infection within the lung tissue can be an important tool. This article describes the approach we used in order to estimate the COVID-19 infection percentage on lung CT scan slices within the Covid-19-Infection-Percentage-Estimation-Challenge. Our method frames the regression problem as a multi-tasking process and is based on modern training pipelines and architectures that correspond to state of the art models on image classification tasks. It obtained the best score on the validation dataset and ranked third in the testing phase within the competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/SENTICLABresearch/Covid-19_Percentage_Estimation.

References

  1. Gavriatopoulou, M., et al.: Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med. 20(4), 493–506 (2020). https://doi.org/10.1007/s10238-020-00648-x

    Article  Google Scholar 

  2. Kucirka, L.M., Lauer, S.A., Laeyendecker, O., Boon, D., Lessler, J.: Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann. Intern. Med. 173, 262–267 (2020)

    Article  Google Scholar 

  3. Bougourzi, F., Distante, C., Ouafi, A., Dornaika, F., Hadid, A., Taleb-Ahmed, A.: Per-COVID-19: a benchmark dataset for COVID-19 percentage estimation from CT-scans. J. Imaging. 7(9), 189 (2021). https://doi.org/10.3390/jimaging7090189

  4. Vantaggiato, E., Paladini, E., Bougourzi, F., Distante, C., Hadid, A., Taleb-Ahmed, A.: Covid-19 recognition using ensemble-CNNs in two new chest x-ray databases. Sensors 21(5), 1748 (2021)

    Article  Google Scholar 

  5. Gao, B.-B., Liu, X., Zhou, H.-Y., Wu, J., Geng, X.: Learning Expectation of Label Distribution for Facial Age and Attractiveness Estimation. CoRR,abs/2007.01771 (2020)

    Google Scholar 

  6. Gao, B.B., Xing, C., Xie, C.W., Wu, J., Geng, X.: Deep Label Distribution Learning with Label Ambiguity, CoRR, abs/1611.01731 (2016)

    Google Scholar 

  7. Zhang, Y., Liu, L., Li, C., Loy, C.C.: Quantifying Facial Age by Posterior of Age Comparisons. CoRR, abs/1708.09687 (2017)

    Google Scholar 

  8. Cao, W., Mirjalili, V., Raschka, S.: Consistent Rank Logits for Ordinal Regression with Convolutional Neural Networks. CoRR, abs/1901.07884 (2019)

    Google Scholar 

  9. Zhang, C., Liu, S., Xu, X., Zhu, C.: C3AE: Exploring the Limits of Compact Model for Age Estimation. CoRR, abs/1904.05059 (2019)

    Google Scholar 

  10. Zhu, H., Zhou, Q., Zhang, J., Wang, J.Z.: Facial Aging and Rejuvenation by Conditional Multi-Adversarial Autoencoder with Ordinal Regression. CoRR, abs/1804.02740 (2018)

    Google Scholar 

  11. Berg, A., Oskarsson, M.: Mark O’Connor: Deep Ordinal Regression with Label Diversity. CoRR, abs/2006.15864 (2020)

    Google Scholar 

  12. Escalera, S., et al.: ChaLearn looking at people 2015: apparent age and cultural event recognition datasets and results. IEEE Int. Conf. Comput. Vision Workshop (ICCVW) 2015, 243–251 (2015). https://doi.org/10.1109/ICCVW.2015.40

    Article  Google Scholar 

  13. Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR 2006), pp. 341–345 (2006). https://doi.org/10.1109/FGR.2006.78

  14. Zhang, Z., Song, Y., Qi, H.: Age Progression/Regression by Conditional Adversarial Autoencoder. CoRR, abs/1702.08423 (2017)

    Google Scholar 

  15. Xie, D., Liang, L., Jin, L., Xu, J., Li, M.: SCUT-FBP: a benchmark dataset for facial beauty perception. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1821–1826 (2015). https://doi.org/10.1109/SMC.2015.319

  16. Ma, D.S., Correll, J., Wittenbrink, B.: The Chicago face database: a free stimulus set of faces and norming data. Behav. Res. Methods 47(4), 1122–1135 (2015). https://doi.org/10.3758/s13428-014-0532-5

    Article  Google Scholar 

  17. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010). https://doi.org/10.1109/TPAMI.2010.36

    Article  Google Scholar 

  18. Chang, K., Chen, C., Hung, Y.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. CVPR 2011, 585–592 (2011). https://doi.org/10.1109/CVPR.2011.5995437

    Article  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. CoRR, abs/1512.03385 (2015)

    Google Scholar 

  20. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated Residual Transformations for Deep Neural Networks, CoRR, abs/1611.05431 (2016)

    Google Scholar 

  21. Hu, J., Shen, L., Sun, G.: Squeeze-and-Excitation Networks, CoRR, abs/1709.01507 (2017)

    Google Scholar 

  22. M.,Tan and Quoc V. Le: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, CoRR, abs/1905.11946 (2019)

    Google Scholar 

  23. Li, X., Wang, W., Hu, X., Yang, J.: Selective Kernel Networks. CoRR, abs/1903.06586 (2019)

    Google Scholar 

  24. Zhang, H., et al.: ResNeSt: Split-Attention Networks. CoRR, abs/2004.08955 (2020)

    Google Scholar 

  25. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-Aware Minimization for Efficiently Improving Generalization. CoRR, abs/2010.01412 (2020)

    Google Scholar 

  26. Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Restarts. CoRR, abs/1608.03983 (2016)

    Google Scholar 

  27. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: Practical data augmentation with no separate search. CoRR, abs/1909.13719 (2019)

    Google Scholar 

  28. Guo, M.-H., et al.: Attention Mechanisms in Computer Vision: A Survey. CoRR, abs/2111.07624 (2021)

    Google Scholar 

  29. Halabi, S.S., Prevedello, L.M., Kalpathy-Cramer, J., et al.: The RSNA pediatric bone age machine learning challenge. Radiology 290(2), 498–503 (2018)

    Article  Google Scholar 

  30. Lathuilière, S., et al.: A comprehensive analysis of deep regression. IEEE Trans. Pattern Anal. Mach. Intell. 42(9), 2065–2081 (2019)

    Article  Google Scholar 

  31. Miron, R., Moisii, C., Dinu, S., Breaban, M.: Evaluating volumetric and slice-based approaches for COVID-19 detection in chest CTs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 529–536 (2021)

    Google Scholar 

  32. Karen, S., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Computer Vision and Pattern Recognition (cs.CV) (2014)

    Google Scholar 

Download references

Acknowledgement

This paper is partially supported by the Competitiveness Operational Programme Romania under project number SMIS 124759 - RaaS-IS (Research as a Service Iasi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Elena Breaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miron, R., Breaban, M.E. (2022). Revitalizing Regression Tasks Through Modern Training Procedures: Applications in Medical Image Analysis for Covid-19 Infection Percentage Estimation. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13374. Springer, Cham. https://doi.org/10.1007/978-3-031-13324-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13324-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13323-7

  • Online ISBN: 978-3-031-13324-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics