Skip to main content

High-Level Feature Extraction for Crowd Behaviour Analysis: A Computer Vision Approach

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

The advent of deep learning has brought in disruptive techniques with unprecedented accuracy rates in so many fields and scenarios. Tasks such as the detection of regions of interest and semantic features out of images and video sequences are quite effectively tackled because of the availability of publicly available and adequately annotated datasets. This paper describes a use case scenario with a deep learning models’ stack being used for crowd behaviour analysis. It consists of two main modules preceded by a pre-processing step. The first deep learning module relies on the integration of YOLOv5 and DeepSORT to detect and track down pedestrians from CCTV cameras’ video sequences. The second module ingests each pedestrian’s spatial coordinates, velocity, and trajectories to cluster groups of people using the Coherent Neighbor Invariance technique. The method envisages the acquisition of video sequences from cameras overlooking pedestrian areas, such as public parks or squares, in order to check out any possible unusualness in crowd behaviour. Due to its design, the system first checks whether some anomalies are underway at the microscale level. Secondly, It returns clusters of people at the mesoscale level depending on velocity and trajectories. This work is part of the physical behaviour detection module developed for the S4AllCities H2020 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smart spaces safety and security: Greece. https://www.s4allcities.eu/

  2. Arbab-Zavar, B., Sabeur, Z.A.: Multi-scale crowd feature detection using vision sensing and statistical mechanics principles. Mach. Vis. Appl. 31(4), 1–16 (2020). https://doi.org/10.1007/s00138-020-01075-4

    Article  Google Scholar 

  3. Ardizzone, E., Bruno, A., Mazzola, G.: Scale detection via keypoint density maps in regular or near-regular textures. Pattern Recogn. Lett. 34(16), 2071–2078 (2013)

    Article  Google Scholar 

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  5. Bruno, A., Ardizzone, E., Vitabile, S., Midiri, M.: A novel solution based on scale invariant feature transform descriptors and deep learning for the detection of suspicious regions in mammogram images. J. Med. Signals Sens. 10(3), 158 (2020)

    Google Scholar 

  6. Bruno, A., Greco, L., La Cascia, M.: Video object recognition and modeling by sift matching optimization. In: Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods, pp. 662–670 (2014)

    Google Scholar 

  7. Cheng, Z., Qin, L., Huang, Q., Yan, S., Tian, Q.: Recognizing human group action by layered model with multiple cues. Neurocomputing 136, 124–135 (2014)

    Article  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Dogbe, C.: On the modelling of crowd dynamics by generalized kinetic models. J. Math. Anal. Appl. 387(2), 512–532 (2012)

    Article  MathSciNet  Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  12. Hou, X., Wang, Y., Chau, L.P.: Vehicle tracking using deep sort with low confidence track filtering. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2019)

    Google Scholar 

  13. Jocher, G., et al.: ultralytics/YOLOV5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, February 2022. https://doi.org/10.5281/zenodo.6222936

  14. Khan, A., Ali Shah, J., Kadir, K., Albattah, W., Khan, F.: Crowd monitoring and localization using deep convolutional neural network: a review. Appl. Sci. 10(14), 4781 (2020)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Liu, W., Salzmann, M., Fua, P.: Context-aware crowd counting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5099–5108 (2019)

    Google Scholar 

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  19. Rodriguez, M., Laptev, I., Sivic, J., Audibert, J.Y.: Density-aware person detection and tracking in crowds. In: 2011 International Conference on Computer Vision, pp. 2423–2430. IEEE (2011)

    Google Scholar 

  20. Sabeur, Z., Arbab-Zavar, B.: Crowd behaviour understanding using computer vision and statistical mechanics principles. In: Bellomo, N., Gibelli, L. (eds.) Crowd Dynamics, Modeling and Simulation in Science, Engineering and Technology, vol. 3, pp. 49–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91646-6_3

  21. Saqib, M., Khan, S.D., Blumenstein, M.: Texture-based feature mining for crowd density estimation: a study. In: 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2016)

    Google Scholar 

  22. Singh, U., Determe, J.F., Horlin, F., De Doncker, P.: Crowd monitoring: state-of-the-art and future directions. IETE Tech. Rev. 38(6), 578–594 (2021)

    Article  Google Scholar 

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  24. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  25. Tripathi, G., Singh, K., Vishwakarma, D.K.: Convolutional neural networks for crowd behaviour analysis: a survey. Vis. Comput. 35(5), 753–776 (2018). https://doi.org/10.1007/s00371-018-1499-5

    Article  Google Scholar 

  26. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017). https://doi.org/10.1109/ICIP.2017.8296962

  27. Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2054–2060. IEEE (2010)

    Google Scholar 

  28. Xu, D., Song, R., Wu, X., Li, N., Feng, W., Qian, H.: Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts. Neurocomputing 143, 144–152 (2014)

    Article  Google Scholar 

  29. Zhang, C., Vinyals, O., Munos, R., Bengio, S.: A study on overfitting in deep reinforcement learning. arXiv preprint arXiv:1804.06893 (2018)

  30. Zhou, B., Tang, X., Wang, X.: Coherent filtering: detecting coherent motions from crowd clutters. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 857–871. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_61

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is a part of the S4AllCities project. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 883522. Content reflects only the authors’ view and the Research Executive Agency (REA)/European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bruno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruno, A. et al. (2022). High-Level Feature Extraction for Crowd Behaviour Analysis: A Computer Vision Approach. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13374. Springer, Cham. https://doi.org/10.1007/978-3-031-13324-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13324-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13323-7

  • Online ISBN: 978-3-031-13324-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics