Skip to main content

An Analysis of Byzantine-Tolerant Aggregation Mechanisms on Model Poisoning in Federated Learning

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13408))

  • 504 Accesses

Abstract

Federated learning is a distributed setting where multiple participants jointly train a machine learning model without exchanging data. Recent work has found that federated learning is vulnerable to backdoor model poisoning attacks, where an attacker leverages the unique environment to submit malicious model updates. To address these malicious participants, several Byzantine-Tolerant aggregation methods have been applied to the federated learning setting, including Krum, Multi-Krum, RFA, and Norm-Difference Clipping. In this work, we analyze the effectiveness and limits of each aggregation method and provide a thorough analysis of their success in various fixed-frequency attack settings. Further, we analyze the fairness of such aggregation methods on the success of the model on its intended tasks. Our results indicate that only one defense can successfully mitigate attacks in all attack scenarios, but a significant fairness issue is observed, highlighting the issues with preventing malicious attacks in a federated setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/pytorch/examples/tree/master/mnist.

References

  1. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. PMLR (2020)

    Google Scholar 

  2. Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial lens. In: International Conference on Machine Learning, pp. 634–643. PMLR (2019)

    Google Scholar 

  3. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  4. Chen, Y., Su, L., Xu, J.: Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proc. ACM Measur. Anal. Comput. Syst. 1(2), 1–25 (2017)

    Google Scholar 

  5. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE (2017)

    Google Scholar 

  6. Fang, M., Cao, X., Jia, J., Gong, N.: Local model poisoning attacks to Byzantine-Robust federated learning. In: 29th USENIX Security Symposium (USENIX Security 2020), pp. 1605–1622 (2020)

    Google Scholar 

  7. Fung, C., Yoon, C.J., Beschastnikh, I.: Mitigating sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866 (2018)

  8. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  9. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  10. Kusetogullari, H., Yavariabdi, A., Cheddad, A., Grahn, H., Johan, H.: ARDIS: a Swedish historical handwritten digit dataset. Neural Comput. Appl. 32(21), 16505–16518 (2020). https://doi.org/10.1007/s00521-019-04163-3

    Article  Google Scholar 

  11. Li, L., Fan, Y., Tse, M., Lin, K.Y.: A review of applications in federated learning. Comput. Ind. Eng. 149, 106854 (2020)

    Article  Google Scholar 

  12. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on Non-IID data. arXiv preprint arXiv:1907.02189 (2019)

  13. Lim, W.Y.B., et al.: Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063 (2020)

    Article  Google Scholar 

  14. Long, G., Tan, Y., Jiang, J., Zhang, C.: Federated learning for open banking. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 240–254. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63076-8_17

    Chapter  Google Scholar 

  15. Luo, J., et al.: Real-world image datasets for federated learning. arXiv preprint arXiv:1910.11089 (2019)

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037 (2019)

    Google Scholar 

  18. Pillutla, K., Kakade, S.M., Harchaoui, Z.: Robust aggregation for federated learning. arXiv preprint arXiv:1912.13445 (2019)

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B.: Can you really backdoor federated learning? arXiv preprint arXiv:1911.07963 (2019)

  21. Wang, H., et al.: Attack of the tails: yes, you really can backdoor federated learning. arXiv preprint arXiv:2007.05084 (2020)

  22. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learning: towards optimal statistical rates. In: International Conference on Machine Learning, pp. 5650–5659. PMLR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Roszel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roszel, M., Norvill, R., State, R. (2022). An Analysis of Byzantine-Tolerant Aggregation Mechanisms on Model Poisoning in Federated Learning. In: Torra, V., Narukawa, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2022. Lecture Notes in Computer Science(), vol 13408. Springer, Cham. https://doi.org/10.1007/978-3-031-13448-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13448-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13447-0

  • Online ISBN: 978-3-031-13448-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics