Skip to main content

“Meanspo Please, I Want to Lose Weight”: A Characterization Study of Meanspiration Content on Tumblr Based on Images and Texts

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2022)

Abstract

Past research has demonstrated a linkage between social media usage and disordered eating habits and body dissatisfaction. Trends relating to eating disorders develop around specific hashtags in communities in social networking sites such as Tumblr. One of these trends is #meanspiration, a tag that is used to request and give mean messages from/to social media users to inspire them to lose weight. In this study, images and texts of Meanspiration posts are automatically analyzed based on colorfulness, the images’ emotional measures pleasure, arousal and dominance, whereas the textual information of the posts is evaluated based on sentiments, emotions and readability. These characteristics are used in a classification task to distinguish Meanspiration from regular content on Tumblr with 81% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Website of the eRisk Lab: https://erisk.irlab.org/.

  2. 2.

    Website of the CLEF initiative: http://www.clef-initiative.eu/.

  3. 3.

    Taken from Urban Dictionary: https://www.urbandictionary.com/define.php?term=Meanspo.

  4. 4.

    Link to the Tumblr API: https://www.tumblr.com/docs/en/api/v2.

  5. 5.

    https://displaypurposes.com/hashtags/hashtag/tumblr.

  6. 6.

    VADER on Pypi.org: https://pypi.org/project/vader-sentiment/.

  7. 7.

    FRES score as part of the textstat package on Pypi.org: https://pypi.org/project/textstat/.

  8. 8.

    using text2emotion; On Pypi.org: https://pypi.org/project/text2emotion/.

References

  1. Boero, N., Pascoe, C.J.: Pro-anorexia communities and online interaction: bringing the pro-ana body online. Body Soc. 18(2), 27–57 (2012)

    Article  Google Scholar 

  2. Branley, D.B., Covey, J.: Pro-ana versus pro-recovery: a content analytic comparison of social media users’ communication about eating disorders on Twitter and Tumblr. Front. Psychol. 8, 1356 (2017)

    Article  Google Scholar 

  3. Burdisso, S.G., Errecalde, M., Montes-y-Gómez, M.: UNSL at eRisk 2019: a unified approach for anorexia, self-harm and depression detection in social media. In: Cappellato, L., Ferro, N., Losada, D.E., Müller, H. (eds.) Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, 9–12 September 2019. CEUR Workshop Proceedings, vol. 2380. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2380/paper_103.pdf

  4. Cavazos-Rehg, P.A., et al.: “I just want to be skinny”: a content analysis of tweets expressing eating disorder symptoms. PloS One 14(1), e0207506 (2019)

    Google Scholar 

  5. Chancellor, S., Kalantidis, Y., Pater, J.A., De Choudhury, M., Shamma, D.A.: Multimodal classification of moderated online pro-eating disorder content. In: Mark, G., et al. (eds.) Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 06–11 May 2017, pp. 3213–3226. ACM (2017). https://doi.org/10.1145/3025453.3025985

  6. Chancellor, S., Lin, Z., Goodman, E.L., Zerwas, S., De Choudhury, M.: Quantifying and predicting mental illness severity in online pro-eating disorder communities. In: Gergle, D., Morris, M.R., Bjørn, P., Konstan, J.A. (eds.) Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, CSCW 2016, San Francisco, CA, USA, 27 February–2 March 2016, pp. 1169–1182. ACM (2016). https://doi.org/10.1145/2818048.2819973

  7. Chancellor, S., Lin, Z.J., De Choudhury, M.: ‘This post will just get taken down’: characterizing removed pro-eating disorder social media content. In: Kaye, J., Druin, A., Lampe, C., Morris, D., Hourcade, J.P. (eds.) Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016, pp. 1157–1162. ACM (2016). https://doi.org/10.1145/2858036.2858248

  8. Chancellor, S., Mitra, T., De Choudhury, M.: Recovery amid pro-anorexia: analysis of recovery in social media. In: Kaye, J., Druin, A., Lampe, C., Morris, D., Hourcade, J.P. (eds.) Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016, pp. 2111–2123. ACM (2016). https://doi.org/10.1145/2858036.2858246

  9. Chancellor, S., Pater, J.A., Clear, T.A., Gilbert, E., De Choudhury, M.: #thyghgapp: Instagram content moderation and lexical variation in pro-eating disorder communities. In: Gergle, D., Morris, M.R., Bjørn, P., Konstan, J.A. (eds.) Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, CSCW 2016, San Francisco, CA, USA, 27 February–2 March 2016, pp. 1199–1211. ACM (2016). https://doi.org/10.1145/2818048.2819963

  10. De Choudhury, M.: Anorexia on Tumblr: a characterization study. In: Kostkova, P., Grasso, F. (eds.) Proceedings of the 5th International Conference on Digital Health 2015, Florence, Italy, 18–20 May 2015, pp. 43–50. ACM (2015). https://doi.org/10.1145/2750511.2750515

  11. Fettach, Y., Benhiba, L.: Pro-eating disorders and pro-recovery communities on reddit: text and network comparative analyses. In: Proceedings of the 21st International Conference on Information Integration and Web-Based Applications & Services, iiWAS 2019, Munich, Germany, 2–4 December 2019, pp. 277–286. ACM (2019). https://doi.org/10.1145/3366030.3366058

  12. Funez, D.G., et al.: UNSL’s participation at eRisk 2018 lab. In: Cappellato, L., Ferro, N., Nie, J., Soulier, L. (eds.) Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, 10–14 September 2018. CEUR Workshop Proceedings, vol. 2125. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2125/paper_137.pdf

  13. Ging, D., Garvey, S.: ‘Written in these scars are the stories I can’t explain’: a content analysis of pro-ana and thinspiration image sharing on Instagram. New Media Soc. 20(3), 1181–1200 (2018)

    Article  Google Scholar 

  14. Grabe, S., Ward, L.M., Hyde, J.S.: The role of the media in body image concerns among women: a meta-analysis of experimental and correlational studies. Psychol. Bull. 134(3), 460 (2008)

    Article  Google Scholar 

  15. Hasler, D., Süsstrunk, S.: Measuring colorfulness in natural images. In: Rogowitz, B.E., Pappas, T.N. (eds.) Human Vision and Electronic Imaging VIII, Santa Clara, CA, USA, 20 January 2003. SPIE Proceedings, vol. 5007, pp. 87–95. SPIE (2003). https://doi.org/10.1117/12.477378

  16. Holland, G., Tiggemann, M.: A systematic review of the impact of the use of social networking sites on body image and disordered eating outcomes. Body Image 17, 100–110 (2016)

    Article  Google Scholar 

  17. Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Adar, E., Resnick, P., De Choudhury, M., Hogan, B., Oh, A.H. (eds.) Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM 2014, Ann Arbor, Michigan, USA, 1–4 June 2014. The AAAI Press (2014). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109

  18. Kincaid, J.P., Fishburne, R.P., Jr., Rogers, R.L., Chissom, B.S.: Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. Technical report, Naval Technical Training Command Millington TN Research Branch (1975)

    Google Scholar 

  19. Losada, D.E., Crestani, F.: A test collection for research on depression and language use. In: Fuhr, N., et al. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 28–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44564-9_3

    Chapter  Google Scholar 

  20. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk: early risk prediction on the internet (extended lab overview). In: Cappellato, L., Ferro, N., Nie, J., Soulier, L. (eds.) Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, 10–14 September 2018. CEUR Workshop Proceedings, vol. 2125. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2125/invited_paper_1.pdf

  21. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk at CLEF 2019: early risk prediction on the internet (extended overview). In: Cappellato, L., Ferro, N., Losada, D.E., Müller, H. (eds.) Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, 9–12 September 2019. CEUR Workshop Proceedings, vol. 2380. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2380/paper_248.pdf

  22. Mabe, A.G., Forney, K.J., Keel, P.K.: Do you “like’’ my photo? Facebook use maintains eating disorder risk. Int. J. Eat. Disord. 47(5), 516–523 (2014)

    Article  Google Scholar 

  23. Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: Bimbo, A.D., Chang, S., Smeulders, A.W.M. (eds.) Proceedings of the 18th International Conference on Multimedia 2010, Firenze, Italy, 25–29 October 2010, pp. 83–92. ACM (2010). https://doi.org/10.1145/1873951.1873965

  24. Masood, R., Hu, M., Fabregat, H., Aker, A., Fuhr, N.: Anorexia topical trends in self-declared reddit users. In: Cantador, I., Chevalier, M., Melucci, M., Mothe, J. (eds.) Proceedings of the First Joint Conference of the Information Retrieval Communities in Europe (CIRCLE 2020), Samatan, Gers, France, 6–9 July 2020. CEUR Workshop Proceedings, vol. 2621. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2621/CIRCLE20_14.pdf

  25. Mohammadi, E., Amini, H., Kosseim, L.: Quick and (maybe not so) easy detection of anorexia in social media posts. In: Cappellato, L., Ferro, N., Losada, D.E., Müller, H. (eds.) Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, 9–12 September 2019. CEUR Workshop Proceedings, vol. 2380. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2380/paper_74.pdf

  26. Ragheb, W., Azé, J., Bringay, S., Servajean, M.: Attentive multi-stage learning for early risk detection of signs of anorexia and self-harm on social media. In: Cappellato, L., Ferro, N., Losada, D.E., Müller, H. (eds.) Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, 9–12 September 2019. CEUR Workshop Proceedings, vol. 2380. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2380/paper_126.pdf

  27. Talbot, C.V., Gavin, J., Van Steen, T., Morey, Y.: A content analysis of thinspiration, fitspiration, and bonespiration imagery on social media. J. Eat. Disord. 5(1), 1–8 (2017)

    Article  Google Scholar 

  28. Tiggemann, M., Anderberg, I.: Social media is not real: the effect of ‘Instagram vs reality’ images on women’s social comparison and body image. New Media Soc. 22(12), 2183–2199 (2020)

    Article  Google Scholar 

  29. Tiggemann, M., Slater, A.: NetGirls: the Internet, Facebook, and body image concern in adolescent girls. Int. J. Eat. Disord. 46(6), 630–633 (2013)

    Article  Google Scholar 

  30. Trotzek, M., Koitka, S., Friedrich, C.M.: Word embeddings and linguistic metadata at the CLEF 2018 tasks for early detection of depression and anorexia. In: Cappellato, L., Ferro, N., Nie, J., Soulier, L. (eds.) Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, 10–14 September 2018. CEUR Workshop Proceedings, vol. 2125. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2125/paper_68.pdf

  31. Turner, B.J., Yiu, A., Layden, B.K., Claes, L., Zaitsoff, S., Chapman, A.L.: Temporal associations between disordered eating and nonsuicidal self-injury: examining symptom overlap over 1 year. Behav. Ther. 46(1), 125–138 (2015)

    Article  Google Scholar 

  32. Valdez, P., Mehrabian, A.: Effects of color on emotions. J. Exp. Psychol. Gen. 123(4), 394 (1994)

    Article  Google Scholar 

  33. Wang, Y., et al.: Understanding and discovering deliberate self-harm content in social media. In: Barrett, R., Cummings, R., Agichtein, E., Gabrilovich, E. (eds.) Proceedings of the 26th International Conference on World Wide Web, pp. 93–102. ACM (2017). https://doi.org/10.1145/3038912.3052555

  34. Wick, M.R., Harriger, J.A.: A content analysis of thinspiration images and text posts on Tumblr. Body Image 24, 13–16 (2018). https://doi.org/10.1016/j.bodyim.2017.11.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Achilles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Achilles, L., Mandl, T., Womser-Hacker, C. (2022). “Meanspo Please, I Want to Lose Weight”: A Characterization Study of Meanspiration Content on Tumblr Based on Images and Texts. In: Barrón-Cedeño, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham. https://doi.org/10.1007/978-3-031-13643-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13643-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13642-9

  • Online ISBN: 978-3-031-13643-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics