Skip to main content

Overview of LifeCLEF 2022: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2022)

Abstract

Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants, animals and fungi is hindering the aggregation of new data and knowledge. Identifying and naming living organisms is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2022 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) PlantCLEF: very large-scale plant identification, (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) SnakeCLEF: snake species identification on a global scale, and (v) FungiCLEF: fungi recognition as an open set classification problem. This paper overviews the motivation, methodology and main outcomes of that five challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cbd.int/.

  2. 2.

    http://www.lifeclef.org/.

  3. 3.

    http://www.imageclef.org/.

  4. 4.

    https://www.aicrowd.com.

  5. 5.

    https://www.kaggle.com.

  6. 6.

    http://www.fgvc.org/.

  7. 7.

    https://cvpr2022.thecvf.com/.

  8. 8.

    http://ceur-ws.org/.

  9. 9.

    https://www.aicrowd.com/challenges/lifeclef-2022-plant.

  10. 10.

    https://gbif.org/.

  11. 11.

    https://eol.org/.

  12. 12.

    https://www.xeno-canto.org/.

  13. 13.

    https://www.kaggle.com/c/birdclef-2022.

  14. 14.

    https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9/data.

  15. 15.

    https://www.fsa.usda.gov.

  16. 16.

    https://geoservices.ign.fr.

  17. 17.

    http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/.

  18. 18.

    https://lpdaac.usgs.gov/products/srtmgl1v003/.

  19. 19.

    https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9.

  20. 20.

    https://www.kaggle.com/competitions/fungiclef2022.

  21. 21.

    https://www.inaturalist.com/.

  22. 22.

    https://www.kaggle.com/competitions/fungiclef2022.

  23. 23.

    https://apps.apple.com/us/app/atlas-of-danish-fungi/id1467728588.

  24. 24.

    https://play.google.com/store/apps/details?id=com.noque.svampeatlas.

  25. 25.

    https://svampe.databasen.org/.

References

  1. Bao, H., Dong, L., Wei, F.: BEiT: BERT pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)

  2. Bolon, I., et al.: Identifying the snake: first scoping review on practices of communities and healthcare providers confronted with snakebite across the world. PLoS one 15(3), e0229989 (2020)

    Article  Google Scholar 

  3. Bonnet, P., et al.: Plant identification: experts vs. machines in the Era of deep learning. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds.) Multimedia Tools and Applications for Environmental and Biodiversity Informatics. MSA, pp. 131–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76445-0_8

    Chapter  Google Scholar 

  4. Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: Bird species recognition. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007 (2007). https://doi.org/10.1109/ISSNIP.2007.4496859

  5. Carranza-Rojas, J., Gonzalez-Villanueva, R., Jimenez-Morales, K., Quesada-Montero, K., Esquivel-Barboza, E., Carvajal-Barboza, N.: Extreme automatic plant identification under constrained resources. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  6. de Castañeda, R.R., et al.: Snakebite and snake identification: empowering neglected communities and health-care providers with AI. Lancet Digit. Health 1(5), e202–e203 (2019)

    Article  Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Chulif, S., Lee, S.H., Chang, Y.L.: A global-scale plant identification using deep learning: Neuon submission to PlantCLEF 2022. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  9. Cole, E., et al.: The GeoLifeCLEF 2020 dataset. arXiv preprint arXiv:2004.04192 (2020)

  10. Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center ArcFace: boosting face recognition by large-scale noisy web faces. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 741–757. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_43

    Chapter  Google Scholar 

  11. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  13. Diao, Q., Jiang, Y., Wen, B., Sun, J., Yuan, Z.: MetaFormer: a unified meta framework for fine-grained recognition. arXiv preprint arXiv:2203.02751 (2022)

  14. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  15. Durso, A.M., et al.: Citizen science and online data: opportunities and challenges for snake ecology and action against snakebite. Toxicon: X 9, 100071 (2021)

    Google Scholar 

  16. Durso, A.M., Moorthy, G.K., Mohanty, S.P., Bolon, I., Salathé, M., Ruiz De Castañeda, R.: Supervised learning computer vision benchmark for snake species identification from photographs: implications for herpetology and global health. Front. Artif. Intell. 4, 17 (2021)

    Google Scholar 

  17. Gaston, K.J., O’Neill, M.A.: Automated species identification: why not? Philos. Trans. Roy. Soc. London B: Biol. Sci. 359(1444), 655–667 (2004)

    Article  Google Scholar 

  18. Ghazi, M.M., Yanikoglu, B., Aptoula, E.: Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235, 228–235 (2017)

    Article  Google Scholar 

  19. Glotin, H., Clark, C., LeCun, Y., Dugan, P., Halkias, X., Sueur, J.: Proceedings of the 1st Workshop on Machine Learning for Bioacoustics - ICML4B. ICML, Atlanta USA (2013). http://sabiod.org/ICML4B2013_book.pdf

  20. Glotin, H., LeCun, Y., Artières, T., Mallat, S., Tchernichovski, O., Halkias, X.: Neural Information Processing Scaled for Bioacoustics, from Neurons to Big Data. In: Proceedings of the NIPS International Conference (2013). http://sabiod.org/nips4b

  21. Goëau, H., Bonnet, P., Joly, A.: Overview of PlantCLEF 2022: image-based plant identification at global scale. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  22. Goëau, H., Bonnet, P., Joly, A., Bakic, V., Barthélémy, D., Boujemaa, N., Molino, J.F.: The imageclef 2013 plant identification task. In: CLEF task overview 2013, CLEF: Conference and Labs of the Evaluation Forum, September 2013, Valencia, Spain. Valencia (2013)

    Google Scholar 

  23. Goëau, H., et al.: The imageclef 2011 plant images classification task. In: CLEF task overview 2011, CLEF: Conference and Labs of the Evaluation Forum, September 2011, Amsterdam, Netherlands (2011)

    Google Scholar 

  24. Goëau, H., et al.: Imageclef 2012 plant images identification task. In: CLEF task overview 2012, CLEF: Conference and Labs of the Evaluation Forum, September 2012, Rome, Italy. Rome (2012)

    Google Scholar 

  25. Goëau, H., Glotin, H., Planqué, R., Vellinga, W.P., Stefan, K., Joly, A.: Overview of BirdCLEF 2018: monophone vs. soundscape bird identification. In: CLEF task overview 2018, CLEF: Conference and Labs of the Evaluation Forum, September 2018, Avignon, France (2018)

    Google Scholar 

  26. Grill, T., Schlüter, J.: Two convolutional neural networks for bird detection in audio signals. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1764–1768, August 2017. https://doi.org/10.23919/EUSIPCO.2017.8081512

  27. Hengl, T., et al.: SoilGrids250m: global gridded soil information based on machine learning. PLoS one 12(2), e0169748 (2017)

    Article  Google Scholar 

  28. Henkel, C., Pfeiffer, P., Singer, P.: Recognizing bird species in diverse soundscapes under weak supervision. In: CLEF Working Notes 2021, CLEF: Conference and Labs of the Evaluation Forum, September 2021, Bucharest, Romania (2021)

    Google Scholar 

  29. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. Roy. Meteorol. Soc. 25(15), 1965–1978 (2005)

    Article  Google Scholar 

  30. Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., Megown, K.: Completion of the 2011 national land cover database for the conterminous united states - representing a decade of land cover change information. Photogram. Eng. Remote Sens. 81(5), 345–354 (2015)

    Google Scholar 

  31. Jiang, J.: Localization of plant and animal species prediction with convolutional neural networks. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  32. Joly, A., et al.: Interactive plant identification based on social image data. Eco. Inform. 23, 22–34 (2014)

    Article  Google Scholar 

  33. Joly, A., et al.: Overview of LifeCLEF 2018: a large-scale evaluation of species identification and recommendation algorithms in the Era of AI. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 247–266. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98932-7_24

    Chapter  Google Scholar 

  34. Joly, A., et al.: Overview of LifeCLEF 2019: identification of Amazonian plants, South and North American birds, and Niche prediction. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 387–401. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_29

    Chapter  Google Scholar 

  35. Joly, A., et al.: LifeCLEF 2016: multimedia life species identification challenges. In: Fuhr, N., et al. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 286–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44564-9_26

    Chapter  Google Scholar 

  36. Joly, A., et al.: LifeCLEF 2017 lab overview: multimedia species identification challenges. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 255–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1_24

    Chapter  Google Scholar 

  37. Joly, A., et al.: LifeCLEF 2014: multimedia life species identification challenges. In: Kanoulas, E., et al. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 229–249. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11382-1_20

    Chapter  Google Scholar 

  38. Joly, A., et al.: LifeCLEF 2015: multimedia life species identification challenges. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 462–483. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24027-5_46

    Chapter  Google Scholar 

  39. Joly, A., et al.: Overview of LifeCLEF 2020: a system-oriented evaluation of automated species identification and species distribution prediction. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS, vol. 12260, pp. 342–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_23

    Chapter  Google Scholar 

  40. Joly, A., et al.: Overview of LifeCLEF 2021: an evaluation of machine-learning based species identification and species distribution prediction. In: Candan, K.S., et al. (eds.) CLEF 2021. LNCS, vol. 12880, pp. 371–393. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_24

    Chapter  Google Scholar 

  41. Kahl, S., Clapp, M., Hopping, A., Goëau, H., Glotin, H., Planqué, R., Vellinga, W.P., Joly, A.: Overview of BirdCLEF 2020: bird sound recognition in complex acoustic environments. In: CLEF task overview 2020, CLEF: Conference and Labs of the Evaluation Forum, September 2020, Thessaloniki, Greece (2020)

    Google Scholar 

  42. Kahl, S., Denton, T., Klinck, H., Glotin, H., Goëau, H., Vellinga, W.P., Planqué, R., Joly, A.: Overview of BirdCLEF 2021: bird call identification in soundscape recordings. In: Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  43. Kahl, S., et al.: Overview of BirdCLEF 2022: Endangered bird species recognition in soundscape recordings. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  44. Kahl, S., Stöter, F.R., Glotin, H., Planqué, R., Vellinga, W.P., Joly, A.: Overview of Birdclef 2019: large-scale bird recognition in soundscapes. In: CLEF task overview 2019, CLEF: Conference and Labs of the Evaluation Forum, September 2019, Lugano, Switzerland (2019)

    Google Scholar 

  45. Kahl, S., Wood, C.M., Eibl, M., Klinck, H.: Birdnet: a deep learning solution for avian diversity monitoring. Eco. Inform. 61, 101236 (2021)

    Article  Google Scholar 

  46. Karun, A., Divyasri, K., Balasundaram, P., Sella Veluswami, J.R.: Plant species identification using probability tree approach of deep learning models. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  47. Kellenberger, B., Devis, T.: Block label swap for species distribution modelling. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  48. Lasseck, M.: Audio-based bird species identification with deep convolutional neural networks. In: CLEF Working Notes 2018, CLEF: Conference and Labs of the Evaluation Forum, September 2018, Avignon, France (2018)

    Google Scholar 

  49. Leblanc, C., Lorieul, T., Servajean, M., Bonnet, P., Joly, A.: Species distribution modeling based on aerial images and environmental features with convolutional neural networks. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  50. Lee, D.J., Schoenberger, R.B., Shiozawa, D., Xu, X., Zhan, P.: Contour matching for a fish recognition and migration-monitoring system. In: Optics East, pp. 37–48. International Society for Optics and Photonics (2004)

    Google Scholar 

  51. Lee, S.H., Chan, C.S., Remagnino, P.: Multi-organ plant classification based on convolutional and recurrent neural networks. IEEE Trans. Image Process. 27(9), 4287–4301 (2018)

    Article  MathSciNet  Google Scholar 

  52. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  53. Liu, H., Zhu, X., Lei, Z., Li, S.Z.: Adaptiveface: adaptive margin and sampling for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11947–11956 (2019)

    Google Scholar 

  54. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  55. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  56. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. arXiv preprint arXiv:2201.03545 (2022)

  57. Lorieul, T., Cole, E., Deneu, B., Servajean, M., Joly, A.: Overview of GeoLifeCLEF 2022: Predicting species presence from multi-modal remote sensing, bioclimatic and pedologic data. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  58. Ong, J.M., Yang, S.J., Ng, K.W., Chan, C.S.: Image-based plant identification with taxonomy aware architecture. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  59. Mühling, M., Franz, J., Korfhage, N., Freisleben, B.: Bird species recognition via neural architecture search. In: CLEF working notes 2020, CLEF: Conference and Labs of the Evaluation Forum, September 2020, Thessaloniki, Greece (2020)

    Google Scholar 

  60. Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N., Clune, J.: A deep active learning system for species identification and counting in camera trap images. Methods Ecol. Evol. 12(1), 150–161 (2021)

    Article  Google Scholar 

  61. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints pp. arXiv-1807 (2018)

    Google Scholar 

  62. Picek, L., Ruiz De Castañeda, R., Durso, A.M., Sharada, P.M.: Overview of the snakeclef 2020: Automatic snake species identification challenge. In: CLEF task overview 2020, CLEF: Conference and Labs of the Evaluation Forum, September 2020, Thessaloniki, Greece (2020)

    Google Scholar 

  63. Picek, L., et al.: Danish fungi 2020-not just another image recognition dataset. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1525–1535 (2022)

    Google Scholar 

  64. Picek, L., Durso, A.M., Hrúz, M., Bolon, I.: Overview of SnakeCLEF 2022: automated snake species identification on a global scale. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  65. Picek, L., Durso, A.M., Ruiz De Castañeda, R., Bolon, I.: Overview of SnakeCLEF 2021: automatic snake species identification with country-level focus. In: Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  66. Picek, L., Šulc, M., Heilmann-Clausen, J., Matas, J.: Overview of FungiCLEF 2022: fungi recognition as an open set classification problem. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  67. Pitman, N.C., et al.: Identifying gaps in the photographic record of the vascular plant flora of the Americas. Nature plants 7(8), 1010–1014 (2021)

    Article  Google Scholar 

  68. Pravinkrishnan, K., Sivakumar, N., Balasundaram, P., Kalinathan, L.: Classification of plant species using Alexnet architecture. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  69. Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al.: Balanced meta-softmax for long-tailed visual recognition. Adv. Neural. Inf. Process. Syst. 33, 4175–4186 (2020)

    Google Scholar 

  70. Roberts, D.R., et al.: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8), 913–929 (2017)

    Article  Google Scholar 

  71. Roll, U., et al.: The global distribution of Tetrapods reveals a need for targeted reptile conservation. Nature Ecol. Evol. 1(11), 1677–1682 (2017)

    Article  Google Scholar 

  72. Seneviratne, S.: Contrastive representation learning for natural world imagery: habitat prediction for 30,000 species. In: Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum (2021)

    Google Scholar 

  73. Shiu, Y., et al.: Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  74. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  75. Teng, M., Elkafrawy, S.: Participation to the GeoLifeCLEF challenge 2022 working notes. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  76. Towsey, M., Planitz, B., Nantes, A., Wimmer, J., Roe, P.: A toolbox for animal call recognition. Bioacoustics 21(2), 107–125 (2012)

    Article  Google Scholar 

  77. Trifa, V.M., Kirschel, A.N., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models. J. Acoust. Soc. Am. 123, 2424 (2008)

    Article  Google Scholar 

  78. Uetz, P., Freed, P., Hošek, J., et al.: The reptile database (2020). https://reptile-database.reptarium.cz/advanced_search

  79. Van Horn, G., et al.: The iNaturalist species classification and detection dataset. In: CVPR (2018)

    Google Scholar 

  80. Villon, S., Mouillot, D., Chaumont, M., Subsol, G., Claverie, T., Villéger, S.: A new method to control error rates in automated species identification with deep learning algorithms. Sci. Rep. 10(1), 1–13 (2020)

    Google Scholar 

  81. Wäldchen, J., Mäder, P.: Machine learning for image based species identification. Methods Ecol. Evol. 9(11), 2216–2225 (2018)

    Article  Google Scholar 

  82. Wäldchen, J., Rzanny, M., Seeland, M., Mäder, P.: Automated plant species identification-trends and future directions. PLoS Comput. Biol. 14(4), e1005993 (2018)

    Article  Google Scholar 

  83. Wang, J., et al.: Seesaw loss for long-tailed instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9695–9704 (2021)

    Google Scholar 

  84. Wood, C.M., Kahl, S., Chaon, P., Peery, M.Z., Klinck, H.: Survey coverage, recording duration and community composition affect observed species richness in passive acoustic surveys. Methods Ecol. Evol. 12(5), 885–896 (2021)

    Article  Google Scholar 

  85. Xiong, Z., et al.: An empirical study for fine-grained fungi recognition with transformer and convnet. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  86. Xu, M., Yoon, S., Lee, J., Park, D.S.: Vision transformer-based unsupervised transfer learning for large scale plant identification. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  87. Yu, X., Wang, J., Kays, R., Jansen, P.A., Wang, T., Huang, T.: Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. (2013)

    Google Scholar 

  88. Zhang, X., Zhou, Y.: A multimodal model for predict the localization of plant and animal species. In: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum (2022)

    Google Scholar 

  89. Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16489–16498 (2021)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No\(^\circ \) 863463 (Cos4Cloud project), and the support of #DigitAG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Joly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joly, A. et al. (2022). Overview of LifeCLEF 2022: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction. In: Barrón-Cedeño, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham. https://doi.org/10.1007/978-3-031-13643-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13643-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13642-9

  • Online ISBN: 978-3-031-13643-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics