Skip to main content

FBMC: A Waveform Candidate for Beyond 5G

  • Chapter
  • First Online:
A Glimpse Beyond 5G in Wireless Networks

Part of the book series: Signals and Communication Technology ((SCT))

  • 419 Accesses

Abstract

Recently, offset quadrature amplitude modulation (OQAM) based filter bank multicarrier (FBMC), due to its reduced out-of-band (OOB) emission, has attracted significant research interests for replacing orthogonal frequency division multiplexing (OFDM) in future wireless communication systems. This chapter analyses and design FBMC-OQAM waveform based multiple-input multiple-output (MIMO) and multi-user massive MIMO systems. It begins by describing key features and differences of FBMC waveform over the widely popular OFDM waveform, followed by the discussion over key challenges in designing FBMC based MIMO and massive MIMO systems. A semi-blind (SB) channel state information (CSI) estimation scheme, which enhances the performance with a limited pilot overhead, is developed for MIMO-FBMC system along with its Cramer-Rao lower bound (CRLB) for benchmarking the performance. To compare the performance of FBMC and OFDM waveforms in the uplink transmission, the achievable sum-rates are derived for multi-user (MU) massive MIMO technology relying on FBMC waveform with maximum ratio combining (MRC) and zero-forcing (ZF) receivers. The corresponding power scaling laws for MU massive MIMO-FBMC are also found. It is shown that in practical impairments such as carrier frequency offset, massive MIMO-FBMC systems significantly outperform their OFDM counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Let the singular value decomposition (SVD) of \({\mathbf {H}}_{\bar {m}}\) be expressed as \(\text{SVD}({\mathbf {H}}_{\bar {m}})={\mathbf {S}}_{\bar {m}}\boldsymbol {\Gamma }_{\bar {m}}{\mathbf {Q}}_{\bar {m}}^{H}\). It is clear that one possible choice for \({\mathbf {W}}_{\bar {m}}={\mathbf {S}}_{\bar {m}}\boldsymbol {\Gamma }_{\bar {m}}\) and the unitary matrix can be set as \({\mathbf {Q}}_{\bar {m}}\). It implies that the whitening unitary decomposition in (3.37) is guaranteed to exist.

References

  1. T. Starr, J.M. Cioffi, P.J. Silverman, Understanding Digital Subscriber Line Technology (Prentice Hall PTR, Hoboken, 1999)

    Google Scholar 

  2. R.V. Nee, R. Prasad, OFDM for Wireless Multimedia Communications (Artech House Inc., Norwood, 2000)

    Google Scholar 

  3. S. Schwarz, T. Philosof, M. Rupp, Signal processing challenges in cellular-assisted vehicular communications: efforts and developments within 3GPP LTE and beyond. IEEE Signal Process. Mag. 34(2), 47–59 (2017)

    Article  Google Scholar 

  4. B. Farhang-Boroujeny, R. Kempter, Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Commun. Mag. 46(4), 80–85 (2008)

    Article  Google Scholar 

  5. T. Pollet, M.V. Bladel, M. Moeneclaey, BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise. IEEE Trans. Commun. 43(234), 191–193 (1995)

    Article  Google Scholar 

  6. M. Morelli, C.J. Kuo, M. Pun, Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proc. IEEE 95(7), 1394–1427 (2007)

    Article  Google Scholar 

  7. V. Vakilian, T. Wild, F. Schaich, S. ten Brink, J. Frigon, Universal-filtered multi-carrier technique for wireless systems beyond LTE, in Workshops Proceedings of the Global Communications Conference, GLOBECOM, Atlanta, December 9–13 (2013), pp. 223–228

    Google Scholar 

  8. B. Farhang-Boroujeny, H. Moradi, OFDM inspired waveforms for 5G. IEEE Commun. Surv. Tutorials 18(4), 2474–2492 (2016)

    Article  Google Scholar 

  9. N. Michailow, M. Matthe, I.S. Gaspar, A.N. Caldevilla, L.L. Mendes, A. Festag, G.P. Fettweis, Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans. Commun. 62(9), 3045–3061 (2014)

    Article  Google Scholar 

  10. B. Farhang-Boroujeny, OFDM versus filter bank multicarrier. IEEE Signal Process. Mag. 28(3), 92–112 (2011)

    Article  Google Scholar 

  11. G. Cherubini, E. Eleftheriou, S. Ölçer, Filtered multitone modulation for very high-speed digital subscriber lines. IEEE J. Select. Areas Commun. 20(5), 1016–1028 (2002)

    Article  Google Scholar 

  12. B. Farhang-Boroujeny, C.H.G. Yuen, Cosine modulated and offset QAM filter bank multicarrier techniques: a continuous-time prospect. EURASIP J. Adv. Sig. Proc. 2010 (2010)

    Google Scholar 

  13. M.G. Bellanger, Specification and design of a prototype filter for filter bank based multicarrier transmission, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2001, 7–11 May, 2001, Salt Palace Convention Center, Salt Lake City (2001), pp. 2417–2420

    Google Scholar 

  14. A. Aminjavaheri, A. Farhang, A. RezazadehReyhani, B. Farhang-Boroujeny, Impact of timing and frequency offsets on multicarrier waveform candidates for 5G, in IEEE Signal Processing and Signal Processing Education Workshop, SP/SPE 2015, Salt Lake City, August 9–12 (2015), pp. 178–183

    Google Scholar 

  15. P. Siohan, C. Siclet, N. Lacaille, Analysis and design of OFDM/OQAM systems based on filterbank theory. IEEE Trans. Signal Proces. 50(5), 1170–1183 (2002)

    Article  Google Scholar 

  16. A.I. Pérez-Neira, M. Caus, R. Zakaria, D.L. Ruyet, E. Kofidis, M. Haardt, X. Mestre, Y. Cheng, MIMO signal processing in offset-QAM based filter bank multicarrier systems. IEEE Trans. Signal Proces. 64(21), 5733–5762 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.J. Abdoli, M. Jia, J. Ma, Weighted circularly convolved filtering in OFDM/OQAM, in 24th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC 2013, London, September 8–11 (2013), pp. 657–661

    Google Scholar 

  18. H. Lin, P. Siohan, Multi-carrier modulation analysis and WCP-COQAM proposal. EURASIP J. Adv. Sig. Proc. 2014, 79 (2014)

    Article  Google Scholar 

  19. H.S. Sourck, Y. Wu, J.W.M. Bergmans, S. Sadri, B. Farhang-Boroujeny, Complexity and performance comparison of filter bank multicarrier and OFDM in uplink of multicarrier multiple access networks. IEEE Trans. Signal Proces. 59(4), 1907–1912 (2011)

    Article  Google Scholar 

  20. R. Nissel, S. Schwarz, M. Rupp, Filter bank multicarrier modulation schemes for future mobile communications. IEEE J. Select. Areas Commun. 35(8), 1768–1782 (2017)

    Article  Google Scholar 

  21. A. Aminjavaheri, A. Farhang, B. Farhang-Boroujeny, Filter bank multicarrier in massive MIMO: analysis and channel equalization. IEEE Trans. Signal Proces. 66(15), 3987–4000 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Rottenberg, X. Mestre, F. Horlin, J. Louveaux, Performance analysis of linear receivers for uplink massive MIMO FBMC-OQAM systems. IEEE Trans. Signal Proces. 66(3), 830–842 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Srivastava, P. Singh, A.K. Jagannatham, A. Karandikar, L. Hanzo, Bayesian learning-based doubly-selective sparse channel estimation for millimeter wave hybrid MIMO-FBMC-OQAM systems. IEEE Trans. Commun. 69(1), 529–543 (2021)

    Article  Google Scholar 

  24. E. Kofidis, D. Katselis, A.A. Rontogiannis, S. Theodoridis, Preamble-based channel estimation in OFDM/OQAM systems: a review. Signal Proces. 93(7), 2038–2054 (2013)

    Article  MATH  Google Scholar 

  25. P. Singh, K. Vasudevan, Preamble-based synchronization for OFDM/OQAM systems in AWGN channel, in 4th IEEE International Conference on Signal Processing and Integrated Networks (SPIN) (2017), pp. 60–65

    Google Scholar 

  26. C. Lélé, J. Javaudin, R. Legouable, A. Skrzypczak, P. Siohan, Channel estimation methods for preamble-based OFDM/OQAM modulations. Eur. Trans. Telecommun. 19(7), 741–750 (2008)

    Article  Google Scholar 

  27. P. Singh, R. Budhiraja, K. Vasudevan, SER analysis of MMSE combining for MIMO FBMC-OQAM systems with imperfect CSI. IEEE Commun. Lett. 23(2), 226–229 (2019)

    Article  Google Scholar 

  28. E. Kofidis, D. Katselis, Preamble-based channel estimation in MIMO-OFDM/OQAM systems, in IEEE International Conference on Signal and Image Processing Applications, ICSIPA, Kuala Lumpur, 16–18 November (2011), pp. 579–584

    Google Scholar 

  29. F. Rottenberg, Y. Medjahdi, E. Kofidis, J. Louveaux, Preamble-based channel estimation in asynchronous FBMC-OQAM distributed MIMO systems, in International Symposium on Wireless Communication Systems (ISWCS), Belgium, 25–28, August (2015), pp. 566–570

    Google Scholar 

  30. S. Hu, Z. L. Liu, Y. L. Guan, C. Jin, Y. Huang, J. Wu, Training sequence design for efficient channel estimation in MIMO-FBMC systems. IEEE Access 5, 4747–4758 (2017)

    Article  Google Scholar 

  31. J.-P. Javaudin, Y. Jiang, Channel estimation in MIMO OFDM/OQAM, in IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, SPAWC (2008), pp. 266–270

    Google Scholar 

  32. P. Singh, K. Vasudevan, MIMO-FBMC channel estimation with limited, and imperfect knowledge of channel correlations, in National Conference on Communications, NCC, Bangalore, February 20–23 (2019), pp. 1–6

    Google Scholar 

  33. E. Kofidis, Preamble-based estimation of highly frequency selective channels in MIMO-FBMC/OQAM systems, in Proceedings of the 21th European Wireless Conference (VDE, Berlin, 2015), pp. 1–6

    Google Scholar 

  34. P. Singh, K. Vasudevan, Time domain channel estimation for MIMO-FBMC/OQAM systems. Wirel. Person. Commun. 108(4), 2159–2178 (2019)

    Article  Google Scholar 

  35. P. Singh, E. Sharma, K. Vasudevan, R. Budhiraja, CFO and channel estimation for frequency selective MIMO-FBMC/OQAM systems. IEEE Wirel. Commun. Lett. 7(5), 844–847 (2018)

    Article  Google Scholar 

  36. M. Lin, Y. Li, L. Xiao, J. Wang, A compressive sensing channel estimation for MIMO FBMC/OQAM system. Wirel. Person. Commun., 1–16 (2017)

    Google Scholar 

  37. M. Renfors, X. Mestre, E. Kofidis, F. Bader, Orthogonal Waveforms and Filter Banks for Future Communication Systems (Academic Press, Cambridge, 2017)

    Google Scholar 

  38. H. Bölcskei, P. Duhamel, R. Hleiss, A subspace-based approach to blind channel identification in pulse shaping OFDM/OQAM systems. IEEE Trans. Signal Proces. 49(7), 1594–1598 (2001)

    Article  Google Scholar 

  39. V. Savaux, F. Bader, J. Palicot, OFDM/OQAM blind equalization using CNA approach. IEEE Trans. Signal Proces. 64(9), 2324–2333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Hou, B. Champagne, Semiblind channel estimation for OFDM/OQAM systems. IEEE Signal Process. Lett. 22(4), 400–403 (2015)

    Article  Google Scholar 

  41. B. Su, Semiblind channel estimation for OFDM/OQAM systems assisted by zero-valued pilots, in IEEE International Conference on Digital Signal Processing, Singapore, July 21–24 (2015), pp. 393–397

    Google Scholar 

  42. E. Kofidis, C. Chatzichristos, A.L.F. de Almeida, Joint channel estimation/data detection in MIMO-FBMC/OQAM systems – A tensor-based approach, in 25th European Signal Processing Conference, EUSIPCO 2017, Kos (2017), pp. 420–424

    Google Scholar 

  43. J.-M. Choi, Y. Oh, H. Lee, J.-S. Seo, Pilot-aided channel estimation utilizing intrinsic interference for FBMC/OQAM systems. IEEE Trans. Broadcast. 63(4), 644–655 (2017)

    Article  Google Scholar 

  44. H. Lin, P. Siohan, Robust channel estimation for OFDM/OQAM. IEEE Commun. Lett. 13(10), 724–726 (2009)

    Article  Google Scholar 

  45. V. Savaux, F. Bader, Y. Louët, A joint MMSE channel and noise variance estimation for OFDM/OQAM modulation. IEEE Trans. Commun. 63(11), 4254–4266 (2015)

    Article  Google Scholar 

  46. D. Katselis, E. Kofidis, A.A. Rontogiannis, S. Theodoridis, Preamble-based channel estimation for CP-OFDM and OFDM/OQAM systems: a comparative study. IEEE Trans. Signal Proces. 58(5), 2911–2916 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. M.J.F. García, E. Biglieri, G. Taricco, Frequency-domain channel estimation in MIMO-OFDM, in 12th European Signal Processing Conference, Vienna, September 6–10 (2004), pp. 1869–1872

    Google Scholar 

  48. R. Vershynin, How close is the sample covariance matrix to the actual covariance matrix?. J. Theoret. Probab. 25(3), 655–686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. P. Singh, H.B. Mishra, A.K. Jagannatham, K. Vasudevan, L. Hanzo, Uplink sum-rate and power scaling laws for multi-user massive MIMO-FBMC systems. IEEE Trans. Commun. 68(1), 161–176 (2020)

    Article  Google Scholar 

  50. A.K. Jagannatham, B.D. Rao, Whitening-rotation-based semi-blind MIMO channel estimation. IEEE Trans. Signal Proces. 54(3), 861–869 (2006)

    Article  MATH  Google Scholar 

  51. K.B. Petersen, M.S. Pedersen et al., The matrix cookbook. Tech. Univ. Denmark 7, 15 (2008)

    Google Scholar 

  52. P. Singh, H.B. Mishra, A.K. Jagannatham, K. Vasudevan, Semi-blind, training, and data-aided channel estimation schemes for MIMO-FBMC-OQAM systems. IEEE Trans. Signal Proces. 67(18), 4668–4682 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. A.K. Jagannatham, B.D. Rao, Cramér-Rao lower bound for constrained complex parameters. IEEE Signal Proces. Lett. 11(11), 875–878 (2004)

    Article  Google Scholar 

  54. J.C. Roh, B.D. Rao, Efficient feedback methods for MIMO channels based on parameterization. IEEE Trans. Wirel. Commun. 6(1), 282–292 (2007)

    Article  Google Scholar 

  55. T.L. Marzetta, E.G. Larsson, H. Yang, H.Q. Ngo, Fundamentals of Massive MIMO (Cambridge University Press, Cambridge, 2016)

    Book  Google Scholar 

  56. A. Aminjavaheri, A. Farhang, L.E. Doyle, B. Farhang-Boroujeny, Prototype filter design for FBMC in massive MIMO channels, in IEEE International Conference on Communications, ICC, Paris, May 21–25 (2017), pp. 1–6

    Google Scholar 

  57. A. Farhang, N. Marchetti, L.E. Doyle, B. Farhang-Boroujeny, Filter bank multicarrier for massive MIMO, in IEEE 80th Vehicular Technology Conference, VTC Fall, Vancouver, September 14–17 (2014), pp. 1–7

    Google Scholar 

  58. A. Aminjavaheri, A. Farhang, N. Marchetti, L.E. Doyle, B. Farhang-Boroujeny, Frequency spreading equalization in multicarrier massive MIMO, in Workshop Proceedings of the IEEE International Conference on Communication, ICC, June 8–12 (2015), pp. 1292–1297

    Google Scholar 

  59. S. Singh, P. Singh, S. Sahu, K. Vasudevan, H.B. Mishra, Uplink transmission in MU multi-cell massive MIMO-FBMC systems over ricean fading, in 94th IEEE Vehicular Technology Conference, VTC Fall 2021, Norman, September 27–30 (2021), pp. 1–6

    Google Scholar 

  60. H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  61. Y. Dai, X. Dong, Power allocation for multi-pair massive MIMO two-way AF relaying with linear processing. IEEE Trans. Wirel. Commun. 15(9), 5932–5946 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Sharma, E. (2023). FBMC: A Waveform Candidate for Beyond 5G. In: Matin, M.A. (eds) A Glimpse Beyond 5G in Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-13786-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13786-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13785-3

  • Online ISBN: 978-3-031-13786-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics