Skip to main content

NOMA for 5G and Beyond Wireless Networks

  • Chapter
  • First Online:
A Glimpse Beyond 5G in Wireless Networks

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The explosive growth of wireless subscribers and high data rate demanding multimedia services have pushed the fourth-generation (4G) network to improve and adapt to the emerging issues. This has led to the evolution of cutting-edge fifth-generation (5G) wireless networks. Few of the well-known techniques for boosting 5G networks are non-orthogonal multiple access (NOMA), small cell deployment (a.k.a. HetNets), millimeter-wave (mmWave) communications, intelligent reflecting surfaces (IRSs), etc. One of the basic elements of the physical layer of a wireless network is the multiple access (MA) techniques. The MA techniques deviate in each generation and have grown from frequency division multiple access, used in the first generation, to orthogonal frequency division multiple access, which is adequately accepted in the 4G network. NOMA (MA scheme that violates the criteria of orthogonality) has been considered a promising multiple access technique for the 5G networks. NOMA supports a huge number of connected users (or devices), lowers latency, and boosts spectral efficiency. Accordingly, the application of NOMA is essential in investigating the 5G network and beyond. Furthermore, NOMA is compatible with recent techniques, such as HetNets, device to device (D2D) communication, mmWave, and IRS. This integrates NOMA with the contending 5G and beyond techniques of great research interest and is presented in this chapter. This chapter introduces a scenario in which a heterogeneous cellular network (HCN) is considered with three tiers, namely, macro base station (macroBS) tier underlaid with femto base station (femtoBS) tier, and D2D tier. NOMA principle is applied in the femtoBS tier and the D2D tier, while the macroBS tier does not use NOMA. Offloading from the macroBS tier to the femtoBS tier aids in tackling congestion at the macroBS tier. The cooperation introduced using the D2D tier further supports the offloaded macro user (macroU) from the macroBS tier. This support is primarily helpful when the femtoBS tier is using NOMA, and the femtoBS tier is unable to find a pairing user for the offloaded macroU. We introduce theoretical bounds and analysis for outage probability supported by Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Xiang, W. Yang, Y. Cai, Z. Ding, Y. Song, Y. Zou, NOMA-assisted secure short-packet communications in IoT. IEEE Wirel. Commun. 27(4), 8–15 (2020)

    Article  Google Scholar 

  2. X. Liu, B. Lin, M. Zhou, M. Jia, NOMA-based cognitive spectrum access for 5G-enabled internet of things. IEEE Network 35, 290–297 (2021)

    Article  Google Scholar 

  3. C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  4. Z. Wei, J. Yuan, D.W.K. Ng, M. Elkashlan, Z. Ding, A survey of downlink non-orthogonal multiple access for 5G wireless communication networks (2016). Preprint arXiv:1609.01856

    Google Scholar 

  5. M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Toward 6G networks: use cases and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020)

    Article  Google Scholar 

  6. R. Mitra, V. Bhatia, Precoded chebyshev-nlms-based pre-distorter for nonlinear led compensation in noma-vlc. IEEE Trans. Commun. 65(11), 4845–4856 (2017)

    Article  Google Scholar 

  7. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in IEEE Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5

    Google Scholar 

  8. Z. Ding, P. Fan, H.V. Poor, Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)

    Article  Google Scholar 

  9. K.S. Gilhousen, I.M. Jacobs, R. Padovani, A.J. Viterbi, L.A. Weaver, C.E. Wheatley, On the capacity of a cellular CDMA system. IEEE Trans. Veh. Technol. 40(2), 303–312 (1991)

    Article  Google Scholar 

  10. J. Li, X. Wu, R. Laroia, OFDMA Mobile Broadband Communications: A Systems Approach (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  11. E. LTE, Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN) (3GPP TS 36.300, version 8.11. 0 release 8), December 2009. ETSI TS, vol. 136, no. 300 (2011), p. V8

    Google Scholar 

  12. E.U.T.R. Access, Further advancements for E-UTRA physical layer aspects. 3GPP TR 36.814, Technical Report (2010)

    Google Scholar 

  13. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55(2), 185–191 (2017)

    Article  Google Scholar 

  14. Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, System-level performance evaluation of downlink non-orthogonal multiple access (NOMA), in IEEE 24th Annual International Symposium on Personal, Indoor Mobile Radio Communications (PIMRC) (2013), pp. 611–615

    Google Scholar 

  15. J. Meredith, Study on channel model for frequency spectrum above 6 GHz, 3GPP TR 38.900, Jun, Technical Report (2016)

    Google Scholar 

  16. Z. Yuan, G. Yu, W. Li, Multi-user shared access for 5G. Telecommun. Netw. Technol. 5(5), 28–30 (2015)

    Google Scholar 

  17. R. Hoshyar, F.P. Wathan, R. Tafazolli, Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. 56(4), 1616–1626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Dai, S. Chen, S. Sun, S. Kang, Y. Wang, Z. Shen, J. Xu, Successive interference cancelation amenable multiple access (SAMA) for future wireless communications, in IEEE International Conference on COMmunication Systems (IEEE, Piscataway, 2014), pp. 222–226

    Google Scholar 

  19. S. Sharma, K. Deka, V. Bhatia, A. Gupta, Joint power-domain and SCMA-based NOMA system for downlink in 5G and beyond. IEEE Commun. Lett. 23(6), 971–974 (2019)

    Article  Google Scholar 

  20. R. Mitra, S. Sharma, G. Kaddoum, V. Bhatia, Color-domain SCMA NOMA for visible light communication. IEEE Commun. Lett. 25(1), 200–204 (2020)

    Article  Google Scholar 

  21. V. Bhatia, P. Swami, S. Sharma, R. Mitra, Non-orthogonal multiple access: An enabler for massive connectivity. J. Indian Inst. Sci. 100(2), 337–348 (2020)

    Article  Google Scholar 

  22. L. Lv, J. Chen, Q. Ni, Z. Ding, H. Jiang, Cognitive non-orthogonal multiple access with cooperative relaying: a new wireless frontier for 5G spectrum sharing. IEEE Commun. Mag. 56(4), 188–195 (2018)

    Article  Google Scholar 

  23. B. Di, L. Song, Y. Li, Z. Han, V2X meets NOMA: Non-orthogonal multiple access for 5G-enabled vehicular networks. IEEE Wirel. Commun. 24(6), 14–21 (2017)

    Article  Google Scholar 

  24. M. Zeng, W. Hao, O.A. Dobre, Z. Ding, Cooperative NOMA: state of the art, key techniques, and open challenges. IEEE Netw. 34(5), 205–211 (2020)

    Article  Google Scholar 

  25. C. Zhang, Y. Liu, Z. Ding, Semi-grant-free NOMA: A stochastic geometry model. IEEE Trans. Wirel. Commun. 21, 1197–1213 (2021)

    Article  Google Scholar 

  26. J. Liu, G. Wu, X. Zhang, S. Fang, S. Li, Modeling, Analysis, and Optimization of Grant-Free NOMA in Massive MTC via Stochastic Geometry. IEEE Int. Things J. 8(6), 4389–4402 (2020)

    Article  Google Scholar 

  27. Q. Zhang, L. Zhang, Y.-C. Liang, P.-Y. Kam, Backscatter-NOMA: A symbiotic system of cellular and Internet-of-Things networks. IEEE Access 7, 20000–20013 (2019)

    Article  Google Scholar 

  28. J. Jose, P. Shaik, V. Bhatia, VFD-NOMA under imperfect SIC and residual inter-Relay interference over generalized nakagami-m fading channels. IEEE Commun. Lett. 25(2), 646–650 (2020)

    Article  Google Scholar 

  29. A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, D. Malladi, A survey on 3GPP heterogeneous networks. IEEE Wirel. Commun. 18(3), 10–21 (2011)

    Article  Google Scholar 

  30. S. Singh, H.S. Dhillon, J.G. Andrews, Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Trans. Wirel. Commun. 12(5), 2484–2497 (2013)

    Article  Google Scholar 

  31. Qualcomm, LTE Advanced: Heterogeneous networks (2010). http://www.qualcomm.com/common/documents/white papers/LTE Heterogeneous Networks.pdf

  32. H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30(3), 550–560 (2012)

    Article  Google Scholar 

  33. W. Bao, B. Liang, Stochastic analysis of uplink interference in two-tier femtocell networks: open versus closed access. IEEE Trans. Wirel. Commun. 14(11), 6200–6215 (2015)

    Article  Google Scholar 

  34. H.-S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wireless Commun. 11(10), 3484–3495 (2012)

    Article  Google Scholar 

  35. S. Parkvall, A. Furuskär, E. Dahlman, Evolution of LTE toward IMT-advanced. IEEE Commun. Mag. 49(2), 84–91 (2011)

    Article  Google Scholar 

  36. F. Guo, H. Lu, B. Li, D. Li, C.W. Chen, Noma-assisted multi-mec offloading for iovt networks. IEEE Wirel. Commun. 28(4), 26–33 (2021)

    Article  Google Scholar 

  37. P. Swami, V. Bhatia, S. Vuppala, T. Ratnarajah, A cooperation scheme for user fairness and performance enhancement in NOMA-HCN. IEEE Trans. Veh. Technol. 67(12), 11965–11978 (2018)

    Article  Google Scholar 

  38. Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, J.A. McCann, Non-orthogonal multiple access in large-scale heterogeneous networks. IEEE J. Sel. Areas Commun. 35(12), 2667–2680 (2017)

    Article  Google Scholar 

  39. A.S. Parihar, P. Swami, V. Bhatia, Z. Ding, Performance analysis of SWIPT enabled cooperative-NOMA in heterogeneous networks using carrier sensing. IEEE Trans. Vehic. Technol. 70(10), 10646–10656 (2021)

    Article  Google Scholar 

  40. Z. Ding, L. Dai, H.V. Poor, MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access 4, 1393–1405 (2016)

    Article  Google Scholar 

  41. J. Xu, J. Zhang, J.G. Andrews, On the accuracy of the Wyner model in cellular networks. IEEE Trans. Wirel. Commun. 10(9), 3098–3109 (2011)

    Article  Google Scholar 

  42. P. Cardieri, Modeling interference in wireless ad hoc networks. IEEE Commun. Surveys Tut. 12(4), 551–572 (2010)

    Article  Google Scholar 

  43. M. Haenggi, Stochastic Geometry for Wireless Networks (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  44. H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surveys Tut. 15(3), 996–1019 (2013)

    Article  Google Scholar 

  45. S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications (Wiley, Hoboken, 2013)

    Book  MATH  Google Scholar 

  46. J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)

    Article  Google Scholar 

  47. H. ElSawy, E. Hossain, A modified hard-core point process for analysis of random CSMA wireless networks in general fading environments. IEEE Trans. Commun. 61(4), 1520–1534 (2013)

    Article  Google Scholar 

  48. G. Alfano, M. Garetto, E. Leonardi, New insights into the stochastic geometry analysis of dense CSMA networks, in IEEE INFOCOM (2011), pp. 2642–2650

    Google Scholar 

  49. H.Q. Nguyen, F. Baccelli, D. Kofman, A stochastic geometry analysis of dense IEEE 802.11 networks, in International Conference on Computer Communications (INFOCOM) (2007), pp. 1199–1207

    Google Scholar 

  50. M. Afshang, H.S. Dhillon, Poisson cluster process based analysis of HetNets with correlated user and base station locations. IEEE Trans. Wirel. Commun. 17(4), 2417–2431 (2018)

    Article  Google Scholar 

  51. C. Saha, H.S. Dhillon, N. Miyoshi, J.G. Andrews, Unified analysis of HetNets using Poisson cluster processes under max-power association. IEEE Trans. Wirel. Commun. 18(8), 3797–3812 (2019)

    Article  Google Scholar 

  52. H. Tabassum, E. Hossain, J. Hossain, Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes. IEEE Trans. Commun. 65(8), 3555–3570 (2017)

    Google Scholar 

  53. M. Haenggi, R. Ganti, Interference in Large Wireless Networks (Now Publishers, Breda, 2008)

    Book  MATH  Google Scholar 

  54. D. Feng, L. Lu, Y. Yuan-Wu, G.Y. Li, S. Li, G. Feng, Device-to-device communications in cellular networks. IEEE Commun. Mag. 52(4), 49–55 (2014)

    Article  Google Scholar 

  55. H. ElSawy, E. Hossain, M.-S. Alouini, Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Trans. Commun. 62(11), 4147–4161 (2014)

    Article  Google Scholar 

  56. A. Asadi, Q. Wang, V. Mancuso, A survey on device-to-device communication in cellular networks. IEEE Commun. Surveys Tut. 16(4), 1801–1819 (2014)

    Article  Google Scholar 

  57. A. Tang, X. Wang, C. Zhang, Cooperative full duplex device to device communication underlaying cellular networks. IEEE Trans. Wirel. Commun. 16(12), 7800–7815 (2017)

    Article  Google Scholar 

  58. J.-F. Shi, L. Tao, M. Chen, Z.-H. Yang, Power control for relay-assisted device-to-device communication underlaying cellular networks, in IEEE nternational Conference on Wireless Communications Signal Processing (WCSP) (2015), pp. 1–6

    Google Scholar 

  59. Z. Ding, M. Peng, H.V. Poor, Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  60. J. Zhao, Y. Liu, K.K. Chai, Y. Chen, M. Elkashlan, J. Alonso-Zarate, NOMA-based D2D communications: Towards 5G, in IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6

    Google Scholar 

  61. J. Venkataraman, M. Haenggi, O. Collins, Shot noise models for outage and throughput analyses in wireless ad hoc networks, in IEEE Military Communications Conference MILCOM 2006 (2006), pp. 1–7

    Google Scholar 

  62. Z. Ding, P. Fan, H.V. Poor, User pairing in non-orthogonal multiple access downlink transmissions, in IEEE Global Communications Conference (GLOBECOM) (2015), pp. 1–5

    Google Scholar 

  63. K. Subrahmaniam, On some applications of Mellin transforms to statistics: dependent random variables. SIAM J. Appl. Math. 19(4), 658–662 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  64. Y. Liu, Z. Ding, M. Elkashlan, J. Yuan, Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans. Veh. Technol. 65(12), 10152–10157 (2016)

    Article  Google Scholar 

  65. L. Lv, H. Jiang, Z. Ding, Q. Ye, N. Al-Dhahir, J. Chen, Secure non-orthogonal multiple access: An interference engineering perspective. IEEE Netw. 35, 278–285 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swami, P., Bhatia, V. (2023). NOMA for 5G and Beyond Wireless Networks. In: Matin, M.A. (eds) A Glimpse Beyond 5G in Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-13786-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13786-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13785-3

  • Online ISBN: 978-3-031-13786-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics