Skip to main content

Vehicular Communications in the B5G Era

  • Chapter
  • First Online:
A Glimpse Beyond 5G in Wireless Networks

Abstract

In this chapter, the requirements and challenges in the design and analysis of advanced wireless communication systems for vehicular communications (from V2V to V2X) will be presented. The characteristics and challenges in wireless channel behavior will be described, from RF-mmWave to future THz frequency bands. Different types of vehicular network configurations, in terms of antenna subsystems and transceivers, will be described, as well as in relation with the impact of dense urban and urban and rural scenarios on system implementation. Examples of coverage/capacity relations for vehicular communication scenarios will be presented, based on volumetric geometric/stochastic modeling techniques. Future beyond 5G (B5G) network architectures, as the evolution of present 5G networks, and current developments will be presented. The role of the satellite segment in the future of B5G vehicular communications will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyond 5G/6G Whitepaper, National Institute of Information and Communications Technology (NICT) (2021)

    Google Scholar 

  2. Beyond 5G/6G Whitepaper, KDDI (2021). (Available Online) https://www.kddi-research.jp/tech/whitepaper_b5g_6g/

  3. A. Pärssinen, in White Paper on RF Enabling 6G – Opportunities and Challenges from Technology to Spectrum, 6G Research Visions, No. 13 (2021)

    Google Scholar 

  4. Beyond 5G Promotion Roadmap -Roadmap to 6G, Ministry of Internal Affairs and Communications, Japan (2020). (Available Online) https://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/presentation/pdf/Beyond_5G_Promotion_Strategy-Roadmap_towards_6G-.pdf

  5. IOWN initiative, NTT. (Available Online) https://www.rd.ntt/iown/

  6. DoCoMo 6G White Paper, DoCoMo (2021). (Available Online) https://www.nttdocomo.co.jp/corporate/technology/whitepaper_6g/

  7. Beyond 5G Vision White Paper, NEC (2021). (Available Online) https://jpn.nec.com/nsp/5g/beyond5g/pdf/NEC_B5G_WhitePaper_1.0.pdf

  8. The Next Hyper – Connected Experience for All, Samsung (2021). (Available Online) https://cdn.codeground.org/nsr/downloads/researchareas/20201201_6G_Vision_web.pdf

  9. Beyond 5G Promotion Consortium (2021). (Available Online) https://b5g.jp

  10. NEXT G ALLIANCE (2021). (Available Online) https://nextgalliance.org/

  11. 6G Wireless Summit (2021). (Available Online) https://www.6gsummit.com/

  12. R.L. Aguiar, in White Paper for Research Beyond 5G, Networld (2015)

    Google Scholar 

  13. ITU WRC-15: Provisional Final Acts, World Radiocommunication Conference, Geneva (Italy) (2015). (Available Online) https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.12-2015-PDF-E.pdf

  14. ITU WRC-19: Provisional Final Acts, World Radiocommunication Conference, Sharm El-Sheikh (Egypt) (2019). (Available Online) https://www.itu.int/en/ITU-R/conferences/wrc/2019/Documents/PFA-WRC19-E.pdf

  15. 26 GHz and 28 GHz are Both Needed for 5G (2021). (Available Online) https://www.gsma.com/spectrum/resources/26-ghz-28-ghz/

  16. GSMA Spectrum Position (2020). (Available Online) https://www.gsma.com/spectrum/wp-content/uploads/2020/03/5G-Spectrum-Positions.pdf

  17. Satellite Technologic Evolution to the 5G ecosystem (2019). (Available Online) https://www.itu.int/en/ITU-R/space/workshops/2019-SatSymp/Presentations/103%20%205G%20Satellites%20Eutelsat.pdf

  18. L. Wei, R. Hu, Y. Qian, G. Wu, Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 21(6), 136–143 (2014)

    Article  Google Scholar 

  19. L. Azpilicueta, C. Vargas-Rosales, F. Falcone, A. Alejos, Radio Wave Propagation in Vehicular Environments (Editorial SciTech Publishing, 2020). ISBN 978-1-78561-823-9

    Google Scholar 

  20. F.A. Rodríguez-Corbo, L. Azpilicueta, M. Celaya-Echarri, A. Alejos, F. Falcone, Propagation models in vehicular communications. IEEE Access 9, 15902–15913 (2021)

    Article  Google Scholar 

  21. C.M. Silva, B.M. Masini, G. Ferrari, I. Thibault, A survey on infrastructure-based vehicular networks. Mob. Inf. Syst. 2017, 6123868 (2017)

    Google Scholar 

  22. Study on LTE-based V2X services, TR36.885, 3GPP, (2016)

    Google Scholar 

  23. A. Bazzi, B.M. Masini, A. Zanella, Performance analysis of V2v beacon-ing using LTE in direct mode with full duplex radios. IEEE Wirel. Commun. Lett. 40(6), 685–688 (2015)

    Article  Google Scholar 

  24. V. Petrov, G. Fodor, J. Kokkoniemi, D. Moltchanov, J. Lehtomäki, On unified vehicular communications and radar sensing in millimeter-wave and low terahertz bands. IEEE Wirel. Commun. Lett. 26(3), 146–153 (2019)

    Article  Google Scholar 

  25. A.G. Volkswagen et al., 5G automotive vision, 5G Infrastructure Public Private Partnership (5G PPP), White paper (2015)

    Google Scholar 

  26. V. Petrov et al., Achieving end-to-end reliability of mission-critical traffic in softwarized 5G networks. IEEE J. Sel. Areas Commun. 36(3), 485–501 (2018)

    Article  Google Scholar 

  27. S. Chen et al., Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Commun. Stand. Mag. 1(2), 70–76 (2017)

    Article  Google Scholar 

  28. J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C.R. Bhat, R.W. Heath, Millimeter-wave vehicular communication to support massive automotive sensing. IEEE Commun. Mag. 54(12), 160–167 (2016)

    Article  Google Scholar 

  29. 5G Automotive Vision, 5G-PPP Project (2014). (Available Online) https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf

  30. B.M. Masini, A. Bazzi, A. Zanella, A survey on the roadmap to mandate on board connectivity and enable V2V-based vehicular sensor networks. Sensors, 18(7), 2207 (2018)

    Google Scholar 

  31. V. Tikhvinskiy, V. Koval, Prospects of 5G Satellite Networks Development. Moving Broadband Mobile Communications Forward - Intelligent Technologies for 5G and Beyond, 1–17 (2021). https://doi.org/10.5772/intechopen.90943

  32. 3rd Generation Partnership Project; Technical Specification Group Ser-vices and System Aspects; Study on Using Satellite Access in 5G; Stage 1 (Release 16), 3GPP TR 22.822 (2018)

    Google Scholar 

  33. Space for 5G & 6G, European Space Agency. (Available Online) https://artes.esa.int/esa-5g6g-hub

  34. Satellite Solutions for 5G, CEPT ECC Report 280 (2018). (Available Online) https://docdb.cept.org

  35. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Scenarios and Requirements for Next Genera-tion Access Technologies; (Release 15), 3GPP TR 38.913 (2016)

    Google Scholar 

  36. F. Khan, Mobile Internet from the Heavens (Samsung Electronics, Richardson, 2015)

    Google Scholar 

  37. Integrated Terrestrial and Space-based Millimeter Wave Radio System for Future Communication Ecosystem beyond 5G (InTerSpaCE-5G+), Project website . (Available Online) https://blogs.upm.es/interspace

  38. A Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 and Beyond, ITU, Focus Group Network (2030). (Available Online) https://www.itu.int/en/ITU-T/focusgroups/net2030/Documents/White_Paper.pdf

  39. A.N. Uwaechia, N.M. Mahyuddin, A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: feasibility and challenges. IEEE Access 8, 62367–62414 (2020)

    Article  Google Scholar 

  40. Service requirements for the 5G system. 3GPP TS 22.261 v17.2.0 (2020)

    Google Scholar 

  41. K. Lioli, Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach. Int. J. Satellite Commun. Netw. 37(2), 91–112 (2019). https://doi.org/10.1002/sat.1245

    Article  Google Scholar 

  42. E.L. Cid, M. Portelas, M. García Sánchez, A. z Alejos, Microcellular radio channel characterization at 60 GHz for 5G communications. IEEE Antennas Wirel. Propag. Lett. 16, 1476–1479 (2016)

    Google Scholar 

  43. E.L. Cid, M. Garcia Sanchez, A. Alejos, Wideband analysis of the satellite communication channel at Ku and X bands. IEEE Trans. Vehic. Technol. 65(4), 2787–2790 (2016)

    Article  Google Scholar 

  44. L. Azpilicueta, M. Rawat, K. Rawat, F. Ghannouchi, F. Falcone, A ray launching-neural network approach for radio wave propagation analysis in complex indoor environments. IEEE Trans. Antenn. Propag. 62(5), 2777–2786 (2014)

    Article  Google Scholar 

  45. L. Azpilicueta, C. Vargas-Rosales, F. Falcone, A.V. Alejos, Radio Wave Propagation in Vehicular Environments. An Imprint of The Institution of Engineering and Technology (SciTech Publishing, London, 2020)

    Book  Google Scholar 

  46. M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surveys Tutor. 18(3), 1617–1655 (2016)

    Article  Google Scholar 

  47. Y. Zeng, Q. Wu, R. Zhang, Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proc. IEEE 107(12), 2327–2375 (2019)

    Article  Google Scholar 

  48. R. Lu, L. Zhang, J. Ni, Y. Fang, 5G vehicle-to-everything services: gearing up for security and privacy. Proc. IEEE 108(2), 373–389 (2020)

    Article  Google Scholar 

  49. W. Wu, R. Liu, Q. Yang, T.Q.S. Quek, Robust resource allocation for vehicular communications with imperfect CSI. IEEE Trans. Wirel. Commun. 20(9), 5883–5897 (2021) https://doi.org/10.1109/TWC.2021.3070894

    Article  Google Scholar 

  50. W. Zhuang, Q. Ye, F. Lyu, N. Cheng, J. Ren, SDN/NFV-empowered future IoV with enhanced communication, computing, and caching. Proc. IEEE 108(2), 274–291 (2020) https://doi.org/10.1109/JPROC.2019.2951169

    Article  Google Scholar 

  51. Y. Ni et al., Toward reliable and scalable internet of vehicles: performance analysis and resource management. Proc. IEEE 108(2), 324–340 (2020). https://doi.org/10.1109/JPROC.2019.2950349

    Article  Google Scholar 

  52. 5G White Paper. Satellite communications services: an integral part of the 5G ecosystem, ESOA (2018). (Available Online) https://esoa.net/cms-data/positions/1693%20ESOA %205G%2016pp%20Booklet%2

  53. Study on LTE support for Vehicle to Everything (V2X) services. TR22.885, 3GPP, (2016)

    Google Scholar 

  54. M. Celaya-Echarri, L. Azpilicueta, A. Vazquez Alejos, M. Garcia Sanchez, F. Falcone, P. Lopez-Iturri, Deterministic 3D ray-launching millimeter wave channel characterization for vehicular communications in Urban environments. Sensors, 20(18), 5284 (2020)

    Google Scholar 

  55. M. García Sánchez, E. Lemos Cid, A. Vazquez Alejos, Empirical modeling of radiowave angular power distributions in different propagation environments at 60 GHz for 5G. Electronics 7(2), 365 (2018)

    Google Scholar 

  56. V.V. Chetlur, H.S. Dhillon, Coverage and rate analysis of downlink cellular vehicle-to-everything (C-V2X) communication. IEEE Trans. Wirel. Commun. 19(3), 1738–1753 (2020). https://doi.org/10.1109/TWC.2019.2957222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyre Azpilicueta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azpilicueta, L., Vargas-Rosales, C., Alejos, A.V., Falcone, F. (2023). Vehicular Communications in the B5G Era. In: Matin, M.A. (eds) A Glimpse Beyond 5G in Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-13786-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13786-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13785-3

  • Online ISBN: 978-3-031-13786-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics