Skip to main content

Implementation of Context-Aware Environments with Massive IoT Systems

  • Chapter
  • First Online:
A Glimpse Beyond 5G in Wireless Networks

Abstract

In this chapter, we will describe the framework for IoT evolution, from current LPWAN/5G connectivity to future B5G systems, taking advantage of sub-THz (mainly in the 100–300 GHz frequency range) and THz bands (up to 10 THz). The requirements in terms of device integration, node density, interference, and energy handling will be described. Coverage/capacity estimations for different case uses within dense urban/urban/suburban settings will be presented, based on deterministic volumetric wireless channel estimation. Different application scenarios, such as the evolution of current IoT applications towards sensing networks, will be discussed, based on the description of three realistic use case scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Int. Things J. 1, 22–32 (2014). https://doi.org/10.1109/JIOT.2014.2306328

    Article  Google Scholar 

  2. R. Morello, S.C. Mukhopadhyay, Z. Liu, D. Slomovitz, S.R. Samantaray, Advances on sensing technologies for smart cities and power grids: a review. IEEE Sensors J. 17, 7596–7610 (2017). https://doi.org/10.1109/JSEN.2017.2735539

    Article  Google Scholar 

  3. M.A.A. Mamun, M.R. Yuce, Sensors and systems for wearable environmental monitoring toward IoT-enabled applications: a review. IEEE Sensors J. 19, 7771–7788 (2019). https://doi.org/10.1109/JSEN.2019.2919352

    Article  Google Scholar 

  4. C. Paniagua, J. Delsing, Industrial frameworks for internet of things: a survey. IEEE Syst. J. 15, 1149–1159 (2021). https://doi.org/10.1109/JSYST.2020.2993323

    Article  Google Scholar 

  5. W. Ayoub, A.E. Samhat, F. Nouvel, M. Mroue, J. Prévotet, Internet of mobile things: overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and supported mobility. IEEE Commun. Surveys Tutor. 21, 1561–1581 (2019). https://doi.org/10.1109/COMST.2018.2877382

    Article  Google Scholar 

  6. U. Raza, P. Kulkarni, M. Sooriyabandara, Low power wide area networks: an overview. IEEE Commun. Surveys Tutor. 19, 855–873 (2017). https://doi.org/10.1109/COMST.2017.2652320

    Article  Google Scholar 

  7. W. Jiang, B. Han, M.A. Habibi, H.D. Schotten, The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021). https://doi.org/10.1109/OJCOMS.2021.3057679

    Article  Google Scholar 

  8. N. Tafintsev et al., Aerial access and Backhaul in mmWave B5G systems: performance dynamics and optimization. IEEE Commun. Mag. 58, 93–99 (2020). https://doi.org/10.1109/MCOM.001.190031

    Article  Google Scholar 

  9. S. Vitturi, C. Zunino, T. Sauter, Industrial communication systems and their future challenges: next-generation ethernet, IIoT, and 5G. Proc. IEEE 107, 944–961 (2019). https://doi.org/10.1109/JPROC.2019.2913443

    Article  Google Scholar 

  10. D. Baumann, F. Mager, U. Wetzker, L. Thiele, M. Zimmerling, S. Trimpe, Wireless control for smart manufacturing: recent approaches and open challenges. Proc. IEEE 109, 441–467 (2021). https://doi.org/10.1109/JPROC.2020.3032633

    Article  Google Scholar 

  11. J. Zhu, Y. Zou, B. Zheng, Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access 5, 5313–5320 (2017). https://doi.org/10.1109/ACCESS.2017.2691003

    Google Scholar 

  12. W. Mao, Z. Zhao, Z. Chang, G. Min, W. Gao, Energy efficient industrial internet of things: overview and open issues. IEEE Trans. Ind. Inf. 17, 7225–7237 (2021). https://doi.org/10.1109/TII.2021.3067026

    Article  Google Scholar 

  13. K.C. Chen, S.C. Lin, J.H. Hsiao, C.H. Liu, A.F. Molisch, G.P. Fettweis, Wireless networked multirobot systems in smart factories. Proc. IEEE 109, 468–494 (2021). https://doi.org/10.1109/JPROC.2020.3033753

    Article  Google Scholar 

  14. Y. Ding et al., Experimental investigation of the packet loss rate of wireless industrial networks in real industrial environments. IEEE Int. Conf. Inf. Autom. 1048–1053 (2015). https://doi.org/10.1109/ICInfA.2015.7279441

  15. R. Dionísio, T. Lolić, P. Torres, Electromagnetic interference analysis of industrial IoT networks: from legacy systems to 5G, in 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW) (2020), pp. 41–46. https://doi.org/10.1109/MTTW51045.2020.9245057

  16. X. Yin, X. Cheng, Propagation Channel Characterization, Parameter Estimation and Modeling for Wireless Communications (Wiley, Singapore, 2016)

    Google Scholar 

  17. Z. Yun, M.F. Iskander, Ray tracing for radio propagation modeling: principles and applications. IEEE Access 3, 1089–1100 (2015). https://doi.org/10.1109/ACCESS.2015.2453991

    Article  Google Scholar 

  18. P. Jörke, S. Böcker, F. Liedmann, C. Wietfeld, Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz, in IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2017), pp. 1–6. https://doi.org/10.1109/PIMRC.2017.8292708

  19. M. Mohamed, M. Cheffena, F. Perez Fontan, A. Moldsvor, A dynamic channel model for indoor wireless signals: working around interference caused by moving human bodies. IEEE Antennas Propag. Mag. 60, 82–91 (2018). https://doi.org/10.1109/MAP.2018.2796022

    Article  Google Scholar 

  20. E.I. Adegoke, R.M. Edwards, W.G. Whittow, A. Bindel, Characterizing the indoor industrial channel at 3.5GHz for 5G, in 2019 Wireless Days (WD) (2019), pp. 1–4. https://doi.org/10.1109/WD.2019.8734160

  21. J. Bian, C.X. Wang , X. Gao, X. You, M. Zhang, A general 3D non-stationary wireless channel model for 5G and beyond. IEEE Trans. Wirel. Commun. 20, 3211–3224 (2021). https://doi.org/10.1109/TWC.2020.3047973

    Article  Google Scholar 

  22. T. Jiang et al., 3GPP standardized 5G channel model for IIoT scenarios: a survey. IEEE Int. Things J. 8, 8799–8815 (2021). https://doi.org/10.1109/JIOT.2020.3048992

    Article  Google Scholar 

  23. Q. Qi, X. Chen, C. Zhong, Z. Zhang, Integrated sensing, computation and communication in B5G cellular internet of things. IEEE Trans. Wirel. Commun. 20, 332–344 (2021). https://doi.org/10.1109/TWC.2020.3024787

    Article  Google Scholar 

  24. H. Zhuang, J. Chen, R. Gilimyanov, Hierarchical energy optimization with more realistic power consumption and interference models for ultra-dense networks. IEEE Trans. Wirel. Commun. 19, 4507–4518 (2020). https://doi.org/10.1109/TWC.2020.2984504

    Article  Google Scholar 

  25. H. Chergui, L. Blanco, C. Verikoukis, Statistical federated learning for beyond 5G SLA-constrained RAN slicing. IEEE Trans. Wirel. Commun. (2021). https://doi.org/10.1109/TWC.2021.3109377

  26. D. Mishra, N.R. Zema, E. Natalizio, A high-end IoT devices framework to foster beyond-connectivity capabilities in 5G/B5G architecture. IEEE Commun. Mag. 59, 55–61 (2021). https://doi.org/10.1109/MCOM.001.2000504

    Article  Google Scholar 

  27. L. Azpilicueta, M. Rawat, K. Rawat, F.M. Ghannouchi, F. Falcone, A ray launching-neural network approach for radio wave propagation analysis in complex indoor environments. IEEE Trans. Antenn Propag. 62, 2777–2786 (2014). https://doi.org/10.1109/TAP.2014.2308518

    Article  Google Scholar 

  28. L. Azpilicueta, F. Falcone, R. Janaswamy, A hybrid ray launching-diffusion equation approach for propagation prediction in complex indoor environments. IEEE Antenn. Wirel. Propag. Lett. 16, 214–217 (2017). https://doi.org/10.1109/LAWP.2016.2570126

    Article  Google Scholar 

  29. L. Azpilicueta, F. Falcone, R. Janaswamy, Hybrid computational techniques: electromagnetic propagation analysis in complex indoor environments. IEEE Antenn. Propag. Mag. 61, 20–30 (2019). https://doi.org/10.1109/MAP.2019.2943297

    Article  Google Scholar 

  30. F. Casino, L. Azpilicueta, P. Lopez-Iturri, E. Aguirre, F. Falcone, A. Solanas, Optimized wireless channel characterization in large complex environments by hybrid ray launching collaborative filtering approach. IEEE Antenn. Wirel. Propag. Lett. 16, 780–783 (2017). https://doi.org/10.1109/LAWP.2016.2604021

    Article  Google Scholar 

  31. L. Azpilicueta, M. Rawat, K. Rawat, F. Ghannouchi, F. Falcone, Convergence analysis in deterministic 3D ray launching radio channel estimation in complex environments. ACES J. 29, 256–271 (2014)

    Google Scholar 

  32. J. Karedal, S. Wyne, P. Almers, F. Tufvesson, A.F. Molisch, A measurement-based statistical model for industrial ultra-wideband channels. IEEE Trans. Wirel. Commun. 6, 3028–3037 (2007)

    Article  Google Scholar 

  33. R.J. Luebbers, A Heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Trans. Antenn. Propag. 37, 206–211 (1989). https://doi.org/10.1109/8.18707

    Article  Google Scholar 

  34. R.J. Luebbers, Comparison of lossy wedge diffraction coefficients with application to mixed path propagation loss prediction. IEEE Trans. Antenn. Propag. 36, 1031–1034 (1998). https://doi.org/10.1109/8.7210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Falcone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picallo, I., Celaya-Echarri, M., Lopez-Iturri, P., Azpilicueta, L., Falcone, F. (2023). Implementation of Context-Aware Environments with Massive IoT Systems. In: Matin, M.A. (eds) A Glimpse Beyond 5G in Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-13786-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13786-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13785-3

  • Online ISBN: 978-3-031-13786-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics