Skip to main content

Characteristic Analysis of a Variable Stiffness Actuator Based on a Rocker-Linked Epicyclic Gear Train

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

This paper presents the characteristic analysis and mechanical realization of a novel variable stiffness actuator based on a rocker-linked epicyclic gear train (REGT-VSA). The stiffness adjustment of the actuator works by converting the differential motion of the planetary gear train into the linear motion of the elastic element. The unique design of the rocker-linked epicyclic gear train ensures excellent compactness and easy controllability, which enables the actuator to be qualified for constructing a manipulator toward cooperation applications. However, the output position and stiffness of the actuator may be affected by the mechanism clearance. The paper introduces characteristic analysis of stiffness and clearance, and carries out a series of related simulations. The analysis results can provide guidelines for the high-quality assembly of lever-based VSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, H., Spenko, M., Dubowsky, S.: An adaptive shared control system for an intelligent mobility aid for the elderly. Auton. Robot. 15(1), 53–66 (2003)

    Article  Google Scholar 

  2. Huang, J., Huo, W., Xu, W., Mohammed, S., Amirat, Y.: Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Trans. Autom. Sci. Eng. 12(4), 1257–1270 (2015)

    Article  Google Scholar 

  3. Liu, Y., Liu, X., Yuan, Z.: Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle. Mech. Mach. Theory 140, 44–58 (2019)

    Article  Google Scholar 

  4. Sun, J., Guo, Z., Zhang, Y., et al.: A novel design of serial variable stiffness actuator based on an archimedean spiral relocation mechanism. IEEE-ASME Trans. Mech. 23(5), 2121–2131 (2018)

    Article  Google Scholar 

  5. Van Ham, R., Vanderborght, B., Van Damme, M., et al.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)

    Article  Google Scholar 

  6. Ning, Y., Xu, W., Huang, H., et al.: Design methodology of a novel variable stiffness actuator based on antagonistic-driven mechanism. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(19–20), 6967–6984 (2019)

    Article  Google Scholar 

  7. Nam, K.H., Kim, B.S., Song, J.B.: Compliant actuation of parallel-type variable stiffness actuator based on antagonistic actuation. J. Mech. Sci. Technol. 24(11), 2315–2321 (2010)

    Article  Google Scholar 

  8. Liu, H., Zhu, D., Xiao, J.: Conceptual design and parameter optimization of a variable stiffness mechanism for producing constant output forces. Mech. Mach. Theory 154, 104033 (2020)

    Article  Google Scholar 

  9. Tao, Y., Wang, T., Wang, Y., Guo, L., et al.: A new variable stiffness robot joint. Ind. Robot. 42(4), 371–378 (2015)

    Article  Google Scholar 

  10. Sun, J., Guo, Z., Sun, D., et al.: Design, modeling and control of a novel compact, energy-efficient, and rotational serial variable stiffness actuator (SVSA-II). Mech. Mach. Theory 130, 123–136 (2018)

    Article  Google Scholar 

  11. Visser, L.C., Carloni, R., Stramigioli, S.: Energy-efficient variable stiffness actuators. IEEE Trans. Robot. 27(5), 865–875 (2011)

    Article  Google Scholar 

  12. Ning, Y., Huang, H., Xu, W., et al.: Design and implementation of a novel variable stiffness actuator with cam-based relocation mechanism. ASME J. Mech. Robot. 13(2), 021009 (2021)

    Article  Google Scholar 

  13. Jafari, A., Tsagarakis, N.G., Sardellitti, I., et al.: A new actuator with adjustable stiffness based on a variable ratio lever mechanism. IEEE-ASME Trans. Mech. 19(1), 55–63 (2012)

    Article  Google Scholar 

  14. Schrade, S.O., Dätwyler, K., Stücheli, M., et al.: Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016. J. Neuroeng. Rehabil. 15(1), 1–18 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Key-area Research and Development Program of Guangdong Province under Grant 2019B090915001, and in part by the Key Fundamental Research Program of Shenzhen under Grant No. JCYJ20200109112818703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Huang, H., Xu, P., Ning, Y., Li, B. (2022). Characteristic Analysis of a Variable Stiffness Actuator Based on a Rocker-Linked Epicyclic Gear Train. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics