Abstract
The moment and impedance of the hip antagonist muscle groups can change dynamically with movement, but existing passive hip prostheses are unable to achieve this function and limit the walking ability of hip amputees. This paper presents a novel adaptive adjustment stiffness system for a semi-active hip prosthesis that can simulate the function of hip antagonist muscles according to real-time detection of gait phase information and improve the walking ability of hip amputees. A method for predicting hip prosthesis kinematic information in advance is proposed to improve real-time performance of stiffness adjustment. The kinematic information at the amputee's healthy side is acquired from the posture sensor, and the kinematic information of the prosthetic side is predicted using a nonlinear autoregressive neural network model. To realize adaptive adjustment of variable stiffness joint, we have developed a stiffness controller based on PID algorithm. The target values for stiffness controller are obtained by analyzing the walking of the healthy person, and the actual stiffness of the hip joint on the prosthetic is determined using angle sensors and torque sensors from a customized embedded system. The hip joint stiffness tracking experiments show that the stiffness controller can effectively improve the regularity of the stiffness curve of the prosthetic joint, and the joint torque is significantly increased. The gait symmetry tests show that gait symmetry indices \({\text{SI}}\) and \({\text{R}}_{{\text{II}}}\) were improved by 86.3% and 85.1%, respectively. The average difference in bilateral gait length of walking amputees was reduced from 6.6 cm to 0.7 cm. The adjustable stiffness system proposed in this study can adaptively adjust the stiffness of the prosthetic joint to the amputee's gait, effectively improving the amputee's walking ability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

References
Asif, M., et al.: Advancements, trends and future prospects of lower limb prosthesis. IEEE Access 9, 85956–85977 (2021)
Lara-Barrios, C.M., Blanco-Ortega, A., Guzman-Valdivia, C.H., Bustamante Valles, K.D.: Literature review and current trends on transfemoral powered prosthetics. Adv. Robot. 32, 51–62 (2018)
Gholizadeh, H., et al.: Hip disarticulation and hemipelvectomy prostheses: A review of the literature. Prosthet. Orthot. Int. 45, 434–439 (2021)
Lui, Z.W., Awad, M.I., Abouhossein, A., Dehghani-Sanij, A.A., Messenger, N.: Virtual prototyping of a semi-active transfemoral prosthetic leg. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 229, 350–361 (2015)
Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., Beckerle, P.: Active lower limb prosthetics: a systematic review of design issues and solutions. Biomed. Eng. Online 15, 140 (2016)
Gailledrat, E., et al.: Does the new Helix 3D hip joint improve walking of hip disarticulated amputees? Ann. Phys. Rehabil. Med. 56, 411–418 (2013)
Orozco, G.A.V., Piña-Aragón, M., Altamirano, A.A. Diaz, D.R.: Polycentric mechanisms used to produce natural movements in a hip prosthesis. In: Braidot, A., Hadad, A. (eds.) VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014, pp. 289–292. Springer International Publishing (2015)
Ueyama, Y., Kubo, T., Shibata, M.: Robotic hip-disarticulation prosthesis: evaluation of prosthetic gaits in a non-amputee individual. Adv. Robot. 34, 37–44 (2020)
Ebrahimzadeh, M.H., et al.: Long-term clinical outcomes of war-related hip disarticulation and transpelvic amputation. JBJS 95, e114 (2013)
Li, X., et al.: Design and optimization of a hip disarticulation prosthesis using the remote center of motion mechanism. Technol. Health Care 29, 269–281 (2021)
Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Networks 7, 1329–1338 (1996)
Karaharju-Huisnan, T., Taylor, S., Begg, R., Cai, J., Best, R.: Gait symmetry quantification during treadmill walking. In: The Seventh Australian and New Zealand Intelligent Information Systems Conference 2001, pp. 203–206. IEEE (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, M., Chen, Y., He, B., Meng, Q., Yu, H. (2022). Study on Adaptive Adjustment of Variable Joint Stiffness for a Semi-active Hip Prosthesis. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-13822-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13821-8
Online ISBN: 978-3-031-13822-5
eBook Packages: Computer ScienceComputer Science (R0)