Skip to main content

An Anti-sideslip Path Tracking Control Method of Wheeled Mobile Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13456))

Included in the following conference series:

Abstract

Anti-sideslip has not been paid much attention by most researchers of wheeled mobile robots. And some existing anti-sideslip path tracking control methods based on switching control have problems such as relying on design experience. To enable the wheeled mobile robot to prevent sideslip and track the reference path at the same time, we propose an anti-sideslip path tracking control method based on a time-varying local model. The principle of this method is to make model predictions and rolling optimizations in the robot coordinate system in each control period. The proposed controller is tested by MATLAB simulation. According to the simulation results, the proposed controller can prevent sideslip when the wheeled mobile robot tracks the reference path. Even if the ground adhesion coefficient is low, the maximum lateral speed of the robot is only 0.2159 m/s. While preventing sideslip, the proposed controller is able to keep the displacement error of path tracking within 0.1681 m. Under the same conditions, the maximum absolute value of the displacement error of the proposed controller is at least 55.15% smaller than that of the controller based on the global model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidek, N., Sarkar, N.: Dynamic modeling and control of nonholonomic mobile robot with lateral slip. In: Third International Conference on Systems (ICONS 2008), pp. 35–40. Cancun, Mexico (2008)

    Google Scholar 

  2. Yang, H., Wang, S., Zuo, Z., Li, P.: Trajectory tracking for a wheeled mobile robot with an omnidirectional wheel on uneven ground. IET Control Theory A. 14(7), 921–929 (2020)

    Article  MathSciNet  Google Scholar 

  3. Ibraheem, G.A.R., Azar, A.T., Ibraheem, I.K., Humaidi, A.J.: A novel design of a neural network-based fractional PID controller for mobile robots using hybridized fruit fly and particle swarm optimization. Complexity 2020, 3067024 (2020)

    Article  Google Scholar 

  4. Khalaji, A.K., Jalalnezhad, M.: Robust forward\backward control of wheeled mobile robots. ISA T. 115, 32–45 (2021)

    Article  Google Scholar 

  5. Zhao, L., Jin, J., Gong, J.: Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment. Math. Comput. Simulat. 185, 289–307 (2021)

    Article  MathSciNet  Google Scholar 

  6. Gao, X., Gao, R., Liang, P., Zhang, Q., Deng, R., Zhu, W.: A hybrid tracking control strategy for nonholonomic wheeled mobile robot incorporating deep reinforcement learning approach. IEEE Access 9, 15592–15602 (2021)

    Article  Google Scholar 

  7. Song, X.G.: Mobile System Modeling of Wheeled Robots and Model Learning-Based Research on Tracking Control. Harbin Institute of Technology, Harbin (2015, in Chinese)

    Google Scholar 

  8. Bai, G.X., Liu, L., Meng, Y., Luo, W.D., Gu, Q., Wang, J.P.: Path tracking of wheeled mobile robots based on dynamic prediction model. IEEE Access 7, 39690–39701 (2019)

    Article  Google Scholar 

  9. Bai, G.X., Meng, Y., Liu, L., Luo, W.D., Gu, Q., Li, K.L.: Anti-sideslip path tracking of wheeled mobile robots based on fuzzy model predictive control. Electron. Lett. 56(10), 490–493 (2020)

    Article  Google Scholar 

  10. Bai, G.X., Zhou, L., Meng, Y., Liu, L., Gu, Q., Wang, G.D.: Path tracking of unmanned vehicles based on time-varying local model. Chin. J. Eng. Online published (2022, in Chinese). https://doi.org/10.13374/j.issn2095-9389.2022.03.18.003

  11. Ji, X., He, X., Lv, C., Liu, Y., Wu, J.: A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation. Veh. Syst. Dyn. 56(6), 923–946 (2018)

    Article  Google Scholar 

  12. Ji, X., Yang, K., Na, X., Lv, C., Liu, Y., Liu, Y.: Feedback game-based shared control scheme design for emergency collision avoidance: a fuzzy-linear quadratic regulator approach. J. Dyn. Syst. Meas. Control Trans. ASME 141(8), 081005 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, G., Meng, Y., Gu, Q., Wang, G., Dong, G., Zhou, L. (2022). An Anti-sideslip Path Tracking Control Method of Wheeled Mobile Robots. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics