Skip to main content

3D Printing of PEDOT:PSS-PU-PAA Hydrogels with Excellent Mechanical and Electrical Performance for EMG Electrodes

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Bioelectronics has been developed for recording the electrophysiological activity of diagnostic and therapeutic devices. However, current bioelectrodes still imperfectly comply with tissues, which results in high interfacial impedance and even mechanical detachment. Herein, we report a simple yet effective approach to overcome such hurdles by designing a highly conductive, adhesive hydrogel composite based on freeze-dried poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS), polyurethane (PU), and poly(acrylic acid) (PAA). With the continuous phase-separation of PEDOT:PSS, PU, and PAA, the resultant composite hydrogels can simultaneously achieve high adhesion (lap-shear strength > 8 kPa), stretchability (fracture strain > 1100%), and electrical conductivity (conductivity > 2 S/m) by overcoming the traditional trade-off between mechanical and electrical properties in conducting polymer hydrogels. Moreover, such hydrogels are readily applicable to advanced manufacturing techniques such as 3D printing. We further fabricated skin electrodes and achieved high quality and high signal-to-noise ratio EMG signal recording of the forearm.

H. Ma, J. Hou, W. Xiong — Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng, J., et al.: Electrical bioadhesive interface for bioelectronics. Nat Mater 20(2), 229–236 (2021)

    Article  Google Scholar 

  2. Yuk, H., Lu, B., Zhao, X.: Hydrogel bioelectronics. Chem Soc Rev 48(6), 1642–1667 (2019)

    Article  Google Scholar 

  3. Pan, L., et al.: A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv Mater 32(38), 2003723 (2020)

    Article  Google Scholar 

  4. Kim, S., Jang, L.K., Jang, M., Lee, S., Hardy, J.G., Lee, J.Y.: Electrically conductive polydopamine-polypyrrole as high-performance biomaterials for cell stimulation in vitro and electrical signal recording in vivo. ACS Appl Mater Interfaces 10(39), 33032–33042 (2018)

    Article  Google Scholar 

  5. Yang, M., et al.: Poly(5-nitroindole) thin film as conductive and adhesive interfacial layer for robust neural interface. Adv Funct Mater 31(49), 2105857 (2021)

    Article  Google Scholar 

  6. Yao, B., et al.: High-stability conducting polymer-based conformal electrodes for bio-/iono-electronics. Mater. Today 53, 84–97 (2022)

    Article  Google Scholar 

  7. Ouyang, L., Wei, B., Kuo, C.C., Pathak, S., Farrell, B., Martin, D.C.: Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2). Sci Adv 3(3), e1600448 (2017)

    Article  Google Scholar 

  8. Inoue, A., Yuk, H., Lu, B., Zhao, X.: Strong adhesion of wet conducting polymers on diverse substrates. Sci. Adv. 6(12), eaay5394 (2020)

    Google Scholar 

  9. Fantino, E., et al.: 3D printing of conductive complex structures with in situ generation of silver nanoparticles. Adv Mater 28(19), 3712–3717 (2016)

    Article  Google Scholar 

  10. Lu, B., et al.: Pure PEDOT:PSS hydrogels. Nat Commun 10(1), 1043 (2019)

    Article  Google Scholar 

  11. Fan, X., et al.: PEDOT:PSS for flexible and stretchable electronics: modifications. Strategies Appl., Adv Sci 6(19), 1900813 (2019)

    Google Scholar 

  12. Donahue, M.J., et al.: Tailoring PEDOT properties for applications in bioelectronics. Mater Sci Eng R Rep 140, 100546 (2020)

    Article  Google Scholar 

  13. Bodart, C., et al.: Electropolymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) coatings for implant-able deep-brain-stimulating microelectrodes. ACS Appl Mater Interfaces 11(19), 17226–17233 (2019)

    Article  Google Scholar 

  14. Yao, B., et al.: Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv Mater 29(28), 1700974 (2017)

    Article  Google Scholar 

  15. Zhao, Q., et al.: Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem Eng J 442, 136284 (2022)

    Article  Google Scholar 

  16. Seyedin, M.Z., Razal, J.M., Innis, P.C., Wallace, G.G.: Strain-responsive Polyure-thane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24(20), 2957–2966 (2014)

    Article  Google Scholar 

  17. Yuk, H., et al.: Dry double-sided tape for adhesion of wet tissues and devices. Nature 575(7781), 169–174 (2019)

    Article  Google Scholar 

  18. Kim, N., et al.: Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater 26(14), 2268–2272 (2014)

    Article  Google Scholar 

  19. Gao, Y., Wu, K., Suo, Z.: Photodetachable adhesion. Adv Mater 31(6), 1806948 (2019)

    Article  Google Scholar 

  20. Taboada, G.M., et al.: Overcoming the translational barriers of tissue adhesives. Nat Rev Mater 5(4), 310–329 (2020)

    Article  Google Scholar 

  21. Sun, J.Y., Keplinger, C., Whitesides, G.M., Suo, Z.: Ionic skin. Adv Mater 26(45), 7608–7614 (2014)

    Article  Google Scholar 

  22. He, K., et al.: An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush. Adv Mater 32(24), 2001130 (2020)

    Article  Google Scholar 

  23. Zhao, X., Chen, X., Yuk, H., Lin, S., Liu, X., Parada, G.: Soft materials by design: unconventional polymer networks give extreme properties. Chem Rev 121(8), 4309–4372 (2021)

    Article  Google Scholar 

  24. Gan, D., et al.: Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl Mater Interfaces 10(42), 36218–36228 (2018)

    Article  Google Scholar 

  25. Zhao, X.: Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10(5), 672–687 (2014)

    Article  Google Scholar 

  26. Jeong, J.W., Shin, G., Park, S.I., Yu, K.J., Xu, L., Rogers, J.A.: Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86(1), 175–186 (2015)

    Article  Google Scholar 

  27. Shi, H., Liu, C., Jiang, Q., Xu, J.: Effective Approaches To Improve The Electrical Conductivity Of PEDOT:PSS: a review. Adv Electron Mater 1(4), 1500017 (2015)

    Article  Google Scholar 

  28. Nevrela, J., et al.: Secondary doping in poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate) thin films. J Polym Sci B Pol Phys 53(16), 1139–1146 (2015)

    Article  Google Scholar 

  29. Hu, F., Xue, Y., Xu, J., Lu, B.: PEDOT-based conducting polymer actuators. Front Robot AI 6, 114 (2019)

    Article  Google Scholar 

  30. Yuk, H., et al.: 3D printing of conducting polymers. Nat Commun 11(1), 1604 (2020)

    Article  Google Scholar 

  31. Teki, S., et al.: The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia. Brain 136(6), 1901–1912 (2013)

    Article  Google Scholar 

  32. Aceves-Fernandez, M.A., Ramos-Arreguin, J.M., Gorrostieta-Hurtado, E., Pedraza-Ortega, J.C.: Methodology proposal of EMG hand movement classification based on cross recur-rence plots. Comput Math Methods Med 2019, 6408941 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51963011), Technological Expertise and Academic Leaders Training Program of Jiangxi Province (20194BCJ22013), Training Program of Natural Science Foundation of China Youth Fund (20202ZDB01007), Jiangxi Provincial Double Thousand Talents Plan-Youth Program (JXSQ2019201108), Natural Science Foundation of Jiangxi Province (20202ACB214001), Jiangxi Key Laboratory of Flexible Electronics (20212BCD42004), the Science and Technology Project of the Education Department of Jiangxi Province (GJJ201101), the Science and Technology Project of the Education Department of Jiangxi Province (GJJ211141), Jiangxi Science and Technology Normal University (2020XJZD006), and Jiangxi Science & Technology Normal University for the Provincial Postgraduate Innovation Program grants (YC2021-S754).

Author information

Authors and Affiliations

Authors

Contributions

H.M. and X.L. proposed the concept and application of PEDOT:PSS-PU-PAA hydrogels. H.M. and W.X. developed the materials and methods for PEDOT:PSS-PU-PAA hydrogels. H.M., W.X., and J.H. performed the adhesion and conductivity tests. H.M. and J.H. performed the EMG experiments. H.M. analyzed the EMG data. H.M., J.H., and X.L. prepared Figures. H.M., J.H., W.X., F.W., and X.L. analyzed the data and wrote the manuscript. J.X., P.J., and X.L. provided funding to support experiments. X.L. and J.X. supervised the work and provided critical feedback on the development of design strategy, device fabrication, data interpretation, application, and critical revision.

Corresponding authors

Correspondence to Ximei Liu or Jingkun Xu .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, H. et al. (2022). 3D Printing of PEDOT:PSS-PU-PAA Hydrogels with Excellent Mechanical and Electrical Performance for EMG Electrodes. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics