Abstract
Face detection based on Unmanned Aerial Vehicles (UAVs) faces following challenges: (1) scale variation. When the UAVs fly in the air, the size of faces is different owing to the distance, which increases the difficulty of face detection. (2) lack of specialized face detection datasets. It results in a sharp drop in the accuracy of algorithm. To address these two issues, we make full advantage of existing open benchmarks to train our model. However, the gap is too huge when we adapt face detectors from the ground to the air. Therefore, we propose a novel network called Face Self-attention Network (FSN) to achieve high performance. Our method conducts extensive experiments on the standard WIDER FACE benchmark. The experimental results demonstrate that FSN can detect multi-scale faces accurately.
This work is supported by the National Natural Science Foundation of China (61873259, U20A20200,61821005), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019203).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22
Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Selective refinement network for high performance face detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8231–8238 (2019)
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, P., Ramanan, D.: Finding tiny faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–959 (2017)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Najibi, M., Samangouei, P., Chellappa, R., Davis, L.S.: SSH: single stage headless face detector. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4875–4884 (2017)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: IEEE International Conference on Computer Vision, vol. 2, p. 273. IEEE Computer Society (2003)
Vaswani, A., et al..: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Wang, J., Yuan, Y., Yu, G.: Face attention network: an effective face detector for the occluded faces. arXiv preprint arXiv:1711.07246 (2017)
Wang, X., Shrivastava, A., Gupta, A.: A-fast-RCNN: hard positive generation via adversary for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2606–2615 (2017)
Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5533 (2016)
Yang, S., Xiong, Y., Loy, C.C., Tang, X.: Face detection through scale-friendly deep convolutional networks. arXiv preprint arXiv:1706.02863 (2017)
Zhang, F., Zhang, T., Mao, Q., Xu, C.: Joint pose and expression modeling for facial expression recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3359–3368 (2018)
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: S3FD: single shot scale-invariant face detector. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 192–201 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hua, S., Fan, H., Ding, N., Li, W., Tang, Y. (2022). A Self-attention Network for Face Detection Based on Unmanned Aerial Vehicles. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-13822-5_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13821-8
Online ISBN: 978-3-031-13822-5
eBook Packages: Computer ScienceComputer Science (R0)