Skip to main content

Control Design for a Planar 2-DOF Parallel Manipulator: An Active Inference Based Approach

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Active inference controller has the advantages of simplicity, high efficiency and low computational complexity. It is based on active inference framework which is prominent in neuroscientific theory of the brain. Although active inference has been successfully applied to neuroscience, its application in robotics are highly limited. In this paper, an active inference controller is adopted to steer a 2-DOF parallel manipulator movement from the initial state to the desired state. Firstly, the active inference controller is introduced. Secondly, Dynamic model of parallel manipulator system with constraints is established by Udwaida-Kalaba equation. Thirdly, apply the active inference controller to the parallel manipulator system. Finally, the simplicity and effectiveness of control effect are verified by numerical simulations.

Supported by the NSFC Programs (No. 52175019, No. 61872217), Beijing Natural Science Foundation (No. 3212009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedersen, M.R., et al.: Robot skills for manufacturing: from concept to industrial deployment. Robot. Comput. Integr. Manuf. 37, 282–291 (2016)

    Article  Google Scholar 

  2. Qi, B.Y., Yang, Q.L., Zhou, Y.Y.: Application of AGV in intelligent logistics system. In: Fifth Asia International Symposium on Mechatronics (AISM 2015). IET (2015)

    Google Scholar 

  3. Roveda, L., et al.: EURECA H2020 CleanSky 2: a multi-robot framework to enhance the fourth industrial revolution in the aerospace industry. In: Proceedings of International Conference on Robotics and Automation (ICRA), Workshop Ind. Future, Collaborative, Connected, Cogn. Novel Approaches Stemming from Factory Future Industry 4.0 Initiatives (2017)

    Google Scholar 

  4. Dufourd, D., Dalgalarrondo, A.: Integrating human/robot interaction into robot control architectures for defense applications. In: 1th National Conference on Control Architecture of Robots, April 2006

    Google Scholar 

  5. Kunz, C., et al.: Deep sea underwater robotic exploration in the ice-covered arctic ocean with AUVs. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2008)

    Google Scholar 

  6. Feng, M., et al.: Development of a medical robot system for minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 8(1), 85–96 (2012)

    Article  Google Scholar 

  7. Merlet, J.-P.: Parallel manipulators: state of the art and perspectives. Adv. Robot. 8(6), 589–596 (1993)

    Article  Google Scholar 

  8. Carricato, M., Parenti-Castelli, V.: Singularity-free fully-isotropic translational parallel mechanisms. Int. J. Robot. Res. 21(2), 161–174 (2002)

    Article  Google Scholar 

  9. Qin, Y., et al.: Modelling and analysis of a rigid-compliant parallel mechanism. Robot. Comput. Integr. Manuf. 29(4), 33–40 (2013)

    Article  Google Scholar 

  10. Su, Y.X., Duan, B.Y., Zheng, C.H.: Nonlinear PID control of a six-DOF parallel manipulator. IEE Proc. Control Theory Appl. 151(1), 95–102 (2004)

    Article  Google Scholar 

  11. Kim, N.-I., Lee, C.-W., Chang, P.-H.: Sliding mode control with perturbation estimation: application to motion control of parallel manipulator. Control. Eng. Pract. 6(11), 1321–1330 (1998)

    Article  Google Scholar 

  12. Li, Y., Qingsong, X.: Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine. Robot. Comput. Integr. Manuf. 25(3), 630–640 (2009)

    Article  Google Scholar 

  13. Cazalilla, J., et al.: Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models. Robot. Comput. Integr. Manuf. 30(5), 468–477 (2014)

    Article  Google Scholar 

  14. Bennehar, M., et al.: A novel adaptive terminal sliding mode control for parallel manipulators: design and real-time experiments. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2017)

    Google Scholar 

  15. Achili, B., et al.: A robust adaptive control of a parallel robot. Int. J. Control 83(10), 2107–2119 (2010)

    Article  MathSciNet  Google Scholar 

  16. Nguyen, V.T., et al.: Finite-time adaptive fuzzy tracking control design for parallel manipulators with unbounded uncertainties. Int. J. Fuzzy Syst. 21(2), 545–555 (2019)

    Article  MathSciNet  Google Scholar 

  17. Kamalasadan, S., Ghandakly, A.A.: A neural network parallel adaptive controller for dynamic system control. IEEE Trans. Instrum. Meas. 56(5), 1786–1796 (2007)

    Article  Google Scholar 

  18. Buckley, C.L., et al.: The free energy principle for action and perception: a mathematical review. J. Math. Psychol. 81, 55–79 (2017)

    Article  MathSciNet  Google Scholar 

  19. Mercade, A.C.: Robot manipulator control under the Active Inference framework (2018)

    Google Scholar 

  20. Pio-Lopez, L., et al.: Active inference and robot control: a case study. J. R. Soc. Interface 13(122), 20160616 (2016)

    Article  Google Scholar 

  21. Oliver, G., Lanillos, P., Cheng, G.: Active inference body perception and action for humanoid robots. arXiv preprint arXiv:1906.03022 (2019)

  22. Pezzato, C., Ferrari, R., Corbato, C.H.: A novel adaptive controller for robot manipulators based on active inference. IEEE Robot. Autom. Lett. 5(2), 2973–2980 (2020)

    Article  Google Scholar 

  23. Baioumy, M., et al.: Active inference for integrated state-estimation, control, and learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2021)

    Google Scholar 

  24. Huang, J., Chen, Y.H., Zhong, Z.: Udwadia-Kalaba approach for parallel manipulator dynamics. J. Dyn. Syst. Meas. Control 135(6) (2013)

    Google Scholar 

  25. Kalaba, R., Udwadia, F.: Analytical dynamics with constraint forces that do work in virtual displacements. Appl. Math. Comput. 121(2–3), 211–217 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Luo, L.: The dynamic modeling of 2-DOF redundant actuation parallel robot based on U-K theory. Dissertation, Chang’an University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., He, Y., Su, Y., Zhao, X., Huang, J., Cheng, L. (2022). Control Design for a Planar 2-DOF Parallel Manipulator: An Active Inference Based Approach. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics