Skip to main content

Cell Classification Based on Stacked Autoencoder for Single-Cell RNA Sequencing

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1515 Accesses

Abstract

Single-cell transcriptome sequencing (scRNA-seq) allows researchers to investigate cellular heterogeneity in gene expression profiles, identify cell types and predict cell fate at the single-cell level. Analysis of scRNA-seq data can effectively extract unknown heterogeneity and functional diversity of cell populations. Cell classification is one of the most important tasks in scRNA-seq data analysis, which contains cell clustering and classification of cell subtypes. Before assigning a cell type to each cluster, the unsupervised clustering methods look for marker genes for each cluster. These approaches are susceptible to a number of drawbacks in terms of sources of variation, technology, etc. Meanwhile, as more cell subtypes are gradually discovered, cluster-based cell type identification methods have been gradually leaning towards classification-based cell type identification. In this paper, we proposed a new cell classification method based on stacked autoencoder for representation learning (scSAERLs), which enhances the accuracy of classification by learning the feature representation of the data through deep network models. The stacked autoencoder-based classification model employed an unsupervised greedy pre-training learning procedure, which was followed by supervised label-based fine-tuning of the entire classification model. We tested the model in the intra and inter datasets, evaluated its performance with a standard classification metric. Experimental results showed that scSAERLs outperformed other commonly used classification methods in terms of classification accuracy and F1-score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang, W., Tang, A.Y.: Biological significance of RNA-seq and single-cell genomic research in woody plants. J. For. Res. 30(5), 1555–1568 (2019). https://doi.org/10.1007/s11676-019-00933-w

    Article  Google Scholar 

  2. Islam, S., et al.: Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21(7), 1160–1167 (2011)

    Article  Google Scholar 

  3. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R.: Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36(5), 411–420 (2018)

    Article  Google Scholar 

  4. Wang, T., Bai, J., Nabavi, S.: Single-cell classification using graph convolutional networks. BMC Bioinform. 22(1), 36 (2021)

    Article  Google Scholar 

  5. Plass, M., Solana, et al.: Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360 (2018)

    Google Scholar 

  6. Ma, F., Pellegrini, M.: ACTINN: Automated identification of cell types in single cell RNA sequencing. Bioinformatics 36(2), 533–538 (2020)

    Google Scholar 

  7. Zhao, X., Wu, S., Fang, N., Sun, X., Fan, J.: Evaluation of single-cell classifiers for single-cell RNA sequencing data sets. Brief. Bioinform. 21(5), 1581–1595 (2020)

    Article  Google Scholar 

  8. Tan, Y., Cahan, P.: SingleCellNet: a computational tool to classify single cell RNA-Seq data across platforms and across species. Cell Syst. 9, 207-213.e2 (2019)

    Article  Google Scholar 

  9. Lin, Y., et al.: scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. Mol. Syst. Biol. 16(6), 1–16 (2020)

    Article  Google Scholar 

  10. Alquicira-Hernandez, J., et al.: ScPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol. 20(1), 1–17 (2019)

    Article  Google Scholar 

  11. Lieberman, Y., Rokach, L., Shay, T.: Correction: CaSTLe - classification of single cells by transfer learning: harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments. PLoS ONE 13(11), 1–16 (2018)

    Article  Google Scholar 

  12. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 3(9), 293–300 (1999)

    Article  Google Scholar 

  13. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  14. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News. 2(3), 18–22 (2002)

    Google Scholar 

  15. Laaksonen, J., Oja, E.: Classification with learning k-nearest neighbors. In: IEEE International Conference on Neural Networks - Conference Proceedings, pp. 1480–1483. IEEE (1996)

    Google Scholar 

  16. Mukherjee, S., Zhang, Y., Fan, J., Seelig, G., Kannan, S.: Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Bioinformatics 34(13), i124–i132 (2018)

    Article  Google Scholar 

  17. Xie, J., Gao, R., Nijkamp, E., Zhu, S.C., Wu, Y.N.: Representation learning: a statistical perspective. Annu. Rev. Stat. Its Appl. 7(1), 303–335 (2020)

    Article  MathSciNet  Google Scholar 

  18. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  19. Zhan, S., Tao, Q.Q., Li, X.H.: Face detection using representation learning. Neurocomputing 187, 19–26 (2016)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  21. Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X.: A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Meas. J. Int. Meas. Confed. 89, 171–178 (2016)

    Article  Google Scholar 

  22. Tamilselvan, P., Wang, P.: Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115, 124–135 (2013)

    Article  Google Scholar 

  23. Narejo, S., Pasero, E., Kulsoom, F.: EEG based eye state classification using deep belief network and stacked autoencoder. Int. J. Electr. Comput. Eng. 6(6), 3131–3141 (2016)

    Google Scholar 

  24. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  25. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2017)

    Article  Google Scholar 

  27. Salakhutdinov, R., Hinton, G.: Replicated softmax: an undirected topic model. In: Adv. Neural Inf. Process. Syst. 22 - Proc. 2009 Conf., pp. 1607–1614 (2009)

    Google Scholar 

  28. Tieleman, T., Hinton, G.: Lecture 6e - rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA Neural networks Mach. Learn. 4, (2012)

    Google Scholar 

  29. Mele, B., Altarelli, G.: Dropout: a simple way to prevent neural networks from overfitting. Phys. Lett. B. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  30. Muraro, M.J., et al.: A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3(4), 385-394.e3 (2016)

    Article  Google Scholar 

  31. Segerstolpe, A., et al.: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24(4), 593–607 (2016)

    Article  Google Scholar 

  32. Xin, Y., et al.: RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab. 24(4), 608–615 (2016)

    Article  Google Scholar 

  33. Yu, Z., et al.: Single-cell transcriptomic map of the human and mouse bladders. J. Am. Soc. Nephrol. 30(11), 2159–2176 (2019)

    Article  Google Scholar 

  34. Zheng, G.X.Y., et al.: Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8(1), 14049 (2017)

    Article  Google Scholar 

  35. Stuart, T., et al.: Comprehensive integration of single-cell data. Cell 177(7), 1888-1902.e21 (2019)

    Article  Google Scholar 

  36. Duan, B., Zhu, C., Chuai, G., Tang, C., Chen, X., Chen, S.: Learning for single-cell assignment. Sci. Adv. 6(44), eabd0855 (2020)

    Google Scholar 

  37. Winkels, H., et al.: Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122(12), 1675–1688 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 61873001, U19A2064), the Natural Science Foundation of Shandong Province (grant number ZR2020KC022), and the Open Project of Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University (grant number MMC202006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Cheng Ni or Yu-Tian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, R., Zheng, CH., Ji, CM., Yu, N., Ni, JC., Wang, YT. (2022). Cell Classification Based on Stacked Autoencoder for Single-Cell RNA Sequencing. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics