Skip to main content

KGAT: Predicting Drug-Target Interaction Based on Knowledge Graph Attention Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1663 Accesses

Abstract

Prediction of Drug-target interaction (DTI) is an important topic in bioinformatics which plays an important role in the process of drug discovery. Although many machine learning methods have been successfully applied to DTI prediction, traditional approaches mostly utilize single chemical structure information or construct heterogeneous graphs that integrate multiple data sources for DTI prediction, while these methods ignore the interaction relationships among sample entities (e.g., drug-drug pairs). The knowledge graph attention network (KGAT) uses biomedical knowledge bases and entity interaction relationships to construct knowledge graph and transforms the DTI problem into a linkage prediction problem for nodes in the knowledge graph. KGAT distinguishes the importance of features by assigning attention weights to neighborhood nodes and learns vector representations by aggregating neighborhood nodes. Then feature vectors are fed into the prediction model for training, at the same time, the parameters of prediction model update by gradient descent. The experiment results show the effectiveness of KGAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vuignier, K., Schappler, J., Veuthey, J.L., Carrupt, P.A., Martel, S.: Drug–protein binding: a critical review of analytical tools. Anal. Bioanal. Chem. 398(1), 53–66 (2010)

    Article  Google Scholar 

  2. Ezzat, A., Wu, M., Li, X., Kwoh, C.K.: Computational prediction of drug-target interactions via ensemble learning. Methods Mol. Biol. (Clifton, N.J.) 1903, 239–254 (2019)

    Article  Google Scholar 

  3. Zhao, T., Hu, Y., Valsdottir, L.R., Zang, T., Peng, J.: Identifying drug-target interactions based on graph convolutional network and deep neural network. Brief. Bioinform. 22(2), 2141–2150 (2020)

    Article  Google Scholar 

  4. Ezzat, A., Wu, M., Li, X., Kwoh, C.K.: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Brief. Bioinform. 20(4), 1337–1357 (2019)

    Article  Google Scholar 

  5. Yan, G., Wang, X., Chen, Z., Wu, X., Yang, Z.: In-silico adme studies for new drug discovery: from chemical compounds to Chinese herbal medicines. Curr. Drug Metab. 18(999), 535–549 (2017)

    Google Scholar 

  6. Vilar, S., Harpaz, R., Uriarte, E., et al.: Drug-drug interaction through molecular structure similarity analysis. J. Am. Med. Inform. Assoc. 19(6), 1066–1074 (2012)

    Article  Google Scholar 

  7. Baskaran, S., Panchavarnam, P.: Data integration using through attentive multi-view graph auto-encoders. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 5, 344–349 (2019)

    Google Scholar 

  8. Ryu, J.Y., Kim, H.U., Sang, Y.L.: Deep learning improves prediction of drug–drug and drug–food interactions. Proc. Natl. Acad. Sci. U.S.A. 115(18), 4304–4311 (2018)

    Article  Google Scholar 

  9. Zhu, J., Liu, Y., Wen, C.: MTMA: multi-task multi-attribute learning for the prediction of adverse drug-drug interaction. Knowl. Based Syst. 199, 105978–105988 (2020)

    Article  Google Scholar 

  10. Wang, S., Shan, P., Zhao, Y., Zuo, L.: MLRDA: GanDTI: a multi-task neural network for drug-target interaction prediction. Comput. Biol. Chem. 92(9), 4518–4524 (2021)

    Google Scholar 

  11. Zhe, Q., Xuan, L., Wang, Z.J., Yan, L., Li, K.: A system for learning atoms based on long short-term memory recurrent neural networks. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 728–733. IEEE (2018)

    Google Scholar 

  12. Xia, L.I., Liu, C., Zhang, Y., Jiang, S.: Cross-lingual semantic sentence similarity modeling based on local and global semantic fusion. J. Chin. Inf. Process., 526–533 (2019)

    Google Scholar 

  13. Quan, Z., Wang, Z.J., Le, Y., Yao, B., Li, K., Yin, J.: An efficient framework for sentence similarity modeling. IEEE/ACM Trans. Audio, Speech Lang. Process. 27(4), 853–865 (2019)

    Article  Google Scholar 

  14. Chen, J., Gong, Z., Wang, W., Wang, C., Liu, W.: Adversarial caching training: unsupervised inductive network representation learning on large-scale graphs. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–12 (2021)

    Google Scholar 

  15. Ehrlinger, L.: Towards a definition of knowledge graphs. In: Joint Proceedings of the Posters and Demos Track of 12th International Conference on Semantic Systems – SEMANTiCS 2016 and 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS16), vol. 48, pp. 1–4 (2016)

    Google Scholar 

  16. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: 7th International Conference on Learning Representations, pp. 978–991 (2019)

    Google Scholar 

  17. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  18. Trouillon, T., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, vol. 48, pp. 2071–2080 (2016)

    Google Scholar 

  19. Lin, X.L., Zhang, X.L.: Prediction of hot regions in PPIs based on improved local community structure detecting. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(5), 1470–1479 (2018)

    Article  Google Scholar 

  20. Zhang, X.L., Lin, X.L., et al.: Efficiently predicting hot spots in PPIs by combining random forest and synthetic minority over-sampling technique. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(3), 774–781 (2019)

    Article  Google Scholar 

  21. Lin, X.L., Zhang, X.L., Xu, X.: Efficient classification of hot spots and hub protein interfaces by recursive feature elimination and gradient boosting. IEEE/ACM Trans. Comput. Bioinform. 17(5), 1525–1534 (2020)

    Article  Google Scholar 

  22. Wishart, D.S., Knox, C.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, 668–672 (2006)

    Article  Google Scholar 

  23. Kanehisa, M., Miho, F.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, 353–361 (2017)

    Article  Google Scholar 

  24. Shaban-Nejad, A., Baker, C.J.O., Haarslev, V., Butler, G.: The FungalWeb ontology: semantic web challenges in bioinformatics and genomics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 1063–1066. Springer, Heidelberg (2005). https://doi.org/10.1007/11574620_78

    Chapter  Google Scholar 

  25. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A. 277, 212–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Caballero, R., Molina, J.: Cross entropy for multiobjective combinatorial optimization problems with linear relaxations. Eur. J. Oper. Res. 243(2), 362–368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Burges, C., Shaked, T., Renshaw, E.: Learning to rank using gradient descent. In: International Conference on Machine Learning, pp. 89–96 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors thank the members of Machine Learning and Artificial Intelligence Laboratory, School of Computer Science and Technology, Wuhan University of Science and Technology, for their helpful discussion within seminars. This work was supported by National Natural Science Foundation of China (No. 61972299, 61502356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Zhang, X., Lin, X. (2022). KGAT: Predicting Drug-Target Interaction Based on Knowledge Graph Attention Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics