Skip to main content

Drug-Target Binding Affinity Prediction Based on Graph Neural Networks and Word2vec

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1650 Accesses

Abstract

Predicting drug-target interaction (DTI) is important for drug development because drug-target interaction affects the physiological function and metabolism of the organism through bonding reactions. Binding affinity is the most important factor among many factors affecting drug-target interaction, thus predicting binding affinity is the key point of drug redirection and new drug development. This paper proposes a drug-target binding affinity (DTA) model based on graph neural networks and word2vec. In this model, the word embedding method is used to convert targets/proteins sequence into sentences containing words to capture the local chemical information of targets/proteins. Then Simplified Molecular Input Line Entry System (SMILES) is used to convert drug molecules into graphs. After feature fusion, DTA is predicted by graph convolutional networks. We conduct experiments on the Kiba and Davis datasets, and the experimental results show that the proposed method significantly improves the prediction performance of DTA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ezzat, A., Wu, M., Li, X.L., et al.: Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey. Brief. Bioinform. 20(4), 1337–1357 (2019)

    Article  Google Scholar 

  2. Chen, X., Yan, C.C., et al.: Drug-target interaction prediction: databases, web servers and computational models. Brief. Bioinform. 17(4), 696–712 (2016)

    Article  Google Scholar 

  3. Strittmatter, S.M.: Overcoming Drug Development Bottlenecks With Repurposing: Old drugs learn new tricks. Nat. Med. 20(6), 590–591 (2014)

    Article  Google Scholar 

  4. Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29, 126–134 (2013)

    Article  Google Scholar 

  5. Tian, K., Shao, M., et al.: Boosting compound-protein interaction prediction by deep learning. Methods Companion Methods Enzymol. 110, 64–72 (2016)

    Google Scholar 

  6. Wan, F., Zeng, J.: Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv (2016)

    Google Scholar 

  7. Hu, P., Chan, K.C., You, Z.H.: Large-scale prediction of drug-target interactions from deep representations. In: International Joint Conference on Neural Networks, pp.1236–1243 (2016)

    Google Scholar 

  8. Wang, L., et al.: A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. J. Comput. Mol. Cell Biol. 25(3), 361–373 (2018)

    Google Scholar 

  9. Wen, M., et al.: Deep-learning-based drug–target interaction prediction. J. Proteome Res. 16(4), 1401–1409 (2017)

    Article  Google Scholar 

  10. Cer, R.Z., et al.: IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucl. Acids Res. 37 (2009)

    Google Scholar 

  11. Pahikkala, T., et al.: Toward more realistic drug–target interaction predictions. Brief. Bioinform. 16(2), 325–337 (2014)

    Article  Google Scholar 

  12. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  13. He, T., Heidemeyer, M., Ban, F., Cherkasov, A., Ester, M.: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. J. Cheminform. 9(1), 24 (2017)

    Google Scholar 

  14. Öztürk, H., Özgür, A., Ozkirimli, E.: Deepdta: deep drug–target binding affinity prediction. Bioinformatics 34(17), 821–829 (2018)

    Article  Google Scholar 

  15. Öztürk, H., Özgür, A., Ozkirimli, E.: WideDTA: prediction of drug-target binding affinity. arXiv. (2019)

    Google Scholar 

  16. Woźniak, M., Wołos, A., Modrzyk, U., Górski, R., et al.: Linguistic measures of chemical diversity and the “keywords” of molecular collections. Sci. Rep. 8(1), 7598 (2018)

    Google Scholar 

  17. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convolutional networks (2017)

    Google Scholar 

  18. Davis, M.I., Hunt, J.P., Herrgard, S., Ciceri, P., Wodicka, L.M., Pallares, G., et al.: Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29(11), 1046–1051 (2011)

    Article  Google Scholar 

  19. Tang, J., et al.: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J. Chem. Inf. Model. 54(3), 735–743 (2014)

    Article  Google Scholar 

  20. Landrum, G. RDKit: Open-source cheminformatics (2006)

    Google Scholar 

  21. Weininger, D.: SMILES: a chemical language and information system. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  22. Helson, H.E.: Structure diagram generation. Rev. Comput. Chem. 13, 313–398 (2007)

    Article  Google Scholar 

  23. Ramsundar, B., Eastman, P., Walters, P., Pande, P.: Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. O’Reilly Media (2019)

    Google Scholar 

  24. Asgari, E., Mofrad, M.R.K.: Continuous distributed representation of biological sequences for deep proteomics and genomics. Plos One. 10(11), e0141287 (2015)

    Google Scholar 

  25. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    Google Scholar 

  26. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines Vinod Nair. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814. Omnipress (2010)

    Google Scholar 

  27. Pahikkala, T., et al.: Toward more realistic drug–target interaction predictions. Brief Bioinform. 16, 325–327 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61972299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, M., Hu, J., Zhang, X., Lin, X. (2022). Drug-Target Binding Affinity Prediction Based on Graph Neural Networks and Word2vec. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics