Skip to main content

Drug-Target Interaction Prediction Based on Attentive FP and Word2vec

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1543 Accesses

Abstract

The study of drug-target interactions (DTIs) plays a crucial role in localizing new drug targets, drug discovery, and drug improvement. Nevertheless, traditional DTI experimental determination is time-consuming and labor-intensive work. Therefore, more and more researchers are investing in using computational methods to predict drug-target interactions. This paper uses the neural network model to conduct further in-depth research on DTI. We use the Word2vec model to extract protein features, use the Attentive FP model to process drugs, obtain their features, and evaluate the results through several widely used model evaluation methods. The experiment result shows that our method works well on human and C.elegans datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masoudi-Nejad, A., Mousavian, Z., Bozorgmehr, J.H.: Drug-target and disease networks: polypharmacology in the post-genomic era. In Silico Pharmacol. 1(1), 17 (2013)

    Article  Google Scholar 

  2. Hasan Mahmud, S.M., Chen, W., Meng, H., Jahan, H., Yongsheng Liu, S.M., Hasan, M.: Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting. Anal. Biochem. 589, 113507 (2020)

    Article  Google Scholar 

  3. Mahmud, S.M.H., et al.: iDTi-CSsmoteB: identification of drug-target interaction based on drug chemical structure and protein sequence using XGBoost with over-sampling technique SMOTE. IEEE Access 7(2019), 48699–48714 (2019)

    Article  Google Scholar 

  4. Wang, C., Pan, Z., Li, X.: Multilevel metric rank match for person re-identification. Cogn. Syst. Res. 65(2021), 98–106 (2020)

    Google Scholar 

  5. Wu, D., Wang, C., Wu, Y., Wang, Q.: Attention deep model with multi-scale deep supervision for person re-identification. IEEE Trans. Emerg. Top. Comput. Intell. 5(1), 70–78 (2021)

    Article  Google Scholar 

  6. Zhang, S., et al.: Attention guided network for retinal image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 797–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_88

    Chapter  Google Scholar 

  7. Chen, L., et al.: TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 36, 4406–4414 (2020)

    Article  Google Scholar 

  8. Tsubaki, M., Tomii, K., Sese, J.: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Article  Google Scholar 

  9. Liu, H., Sun, J., Guan, J., Zheng, J., Zhou, S.: Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 2015(12), i221–i229 (2015)

    Article  Google Scholar 

  10. Wan, F., Zeng, J.: Deep learning with feature embedding for compound-protein interaction prediction (2016)

    Google Scholar 

  11. Tian, K., Shao, M., Wang, Y., Guan, J., Zhou, S.: Boosting compound-protein interaction prediction by deep learning. Methods 110, 64–72 (2016)

    Article  Google Scholar 

  12. Hamanaka, M., et al.: CGBVS‐DNN: Prediction of Compound‐protein Interactions Based on Deep Learning. Mol. Inf. 36(1–2), 1600045 (2017)

    Article  Google Scholar 

  13. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning methods for predicting drug–target interactions: a brief review. Briefings in Bioinf. 15(5), 734–747 (2014)

    Article  Google Scholar 

  14. Wishart, D.S., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Database issue), D901–D906 (2008)

    Article  Google Scholar 

  15. Gunther, S., et al.: SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36(Database), D919–D922 (2007)

    Article  Google Scholar 

  16. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem, Inform. Model. 28(1), 31–36 (1988)

    Article  Google Scholar 

  17. Mousavian, Z., Khakabimamaghani, S., Kavousi, K., Masoudi-Nejad, A.: Drug–target interaction prediction from PSSM based evolutionary information. J. Pharmacol. Toxicol. Methods 78, 42–51 (2016)

    Article  Google Scholar 

  18. Guha, R.: Chemical informatics functionality in R. J. Stat. Softw. 18(5), 359–361 (2007)

    Article  Google Scholar 

  19. Hasan Mahmud, S.M., Chen, W., Jahan, H., Dai, B., Din, S.U., Dzisoo, A.M.: DeepACTION: a deep learning-based method for predicting novel drug-target interactions. Anal. Biochem. 610, 113978 (2020)

    Article  Google Scholar 

  20. Cao, D.-S., Xiao, N., Xu, Q.-S., Chen, A.F.: Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 31(2), 279–281 (2015)

    Article  Google Scholar 

  21. Xiong, Z., et al.: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J. Med. Chem. 63(16), 8749–8760 (2020)

    Article  Google Scholar 

  22. Landrum, G.: RDKit: open-source cheminformatics from machine learning to chemical registration. Abstracts of Papers Am. Chem. Soc. 258 (2019)

    Google Scholar 

  23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. Computer Science abs/1301.3781 (2013)

    Google Scholar 

  24. Zhang, Y., et al.: SPVec: a word2vec-inspired feature representation method for drug-target interaction prediction. Front. Chem. 7, 895 (2019)

    Article  Google Scholar 

  25. Zheng, S., Li, Y., Chen, S., Jun, X., Yang, Y.: Predicting drug–protein interaction using quasi-visual question answering system. Nat. Mach. Intell. 2(2), 134–140 (2020)

    Article  Google Scholar 

  26. Gan, H., Hu, J., Zhang, X., Huang, Q., Zhao, J.: Accurate prediction of hot spots with greedy gradient boosting decision tree. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 353–364. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_43

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 61972299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, Y., Hu, J., Zhao, Z., Ye, S. (2022). Drug-Target Interaction Prediction Based on Attentive FP and Word2vec. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics