Skip to main content

Bio-ATT-CNN: A Novel Method for Identification of Glioblastoma

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1453 Accesses

Abstract

Through the years, many learning methods which made remarkable feat are raised in many industries. Many focus had been paid to attention-convolution (ATT-CNN). Achievements have been made in image processing, computer vision and natural language processing with this technique. But, insufficiency of interpretability is still a significant hinder to application of deep neural networks. It is especially in predicting performance of illness result. Regrettably, ATT-CNN is not able to directly apply in it. Accordingly, we came up with an original method. It is named Bio-ATT-CNN. It is able to distinguish long-term survival (LTS) and non-LTS if we use glioblastoma multiforme (GBM) as out detecting task. Let me just make a few points. Traditional model is not able to directly apply biological data. This model is able to be good for applying to biological data. It means that identifies essential biological connection of illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ampie, L., Woolf, E.C., Dardis, C.: Immunotherapeutic advancements for glioblastoma. Front. Oncol. 5, 12 (2015)

    Article  Google Scholar 

  2. Bengio, Y., Goodfellow, I., Courville, A.: Deep Learning, vol. 1. MIT press, Cambridge (2017)

    MATH  Google Scholar 

  3. Du, J., et al.: Convolution-based neural attention with applications to sentiment classification. IEEE Access 7, 27983–27992 (2019)

    Article  Google Scholar 

  4. Cai, W., Wei, Z.: Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. (2020)

    Google Scholar 

  5. Evans, R., et al.: De novo structure prediction with deep learning based scoring. Annu. Rev. Biochem. 77(363–382), 6 (2018)

    Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  7. Jiang, H., et al.: A multi-label deep learning model with interpretable Grad-CAM for diabetic retinopathy classification. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE (2020)

    Google Scholar 

  8. Yun, S., et al., Graph transformer networks. Adv. neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  9. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  10. Liu, J., et al.: Deep adversarial graph attention convolution network for text-based person search. In: Proceedings of the 27th ACM International Conference on Multimedia (2019)

    Google Scholar 

  11. Pusey, C.D., et al.: Plasma exchange in focal necrotizing glomerulonephritis without anti-GBM antibodies. Kidney Int. 40(4), 757–763 (1991)

    Article  Google Scholar 

  12. Terzopoulos, D., Vasilescu, M.: Sampling and reconstruction with adaptive meshes. In: CVPR (1991)

    Google Scholar 

  13. Holland, E.C.: Glioblastoma multiforme: the terminator. Proc. Natl. Acad. Sci. 97(12), 6242–6244 (2000)

    Article  Google Scholar 

  14. Wang, L., et al.: Graph attention convolution for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  15. Yuan, L., et al.: Module based differential coexpression analysis method for type 2 diabetes. BioMed. Res. Int. 2015 (2015)

    Google Scholar 

  16. Yuan, L., et al.: Nonconvex penalty based low-rank representation and sparse regression for eQTL mapping. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(5), 1154–1164 (2016)

    Article  Google Scholar 

  17. Yuan, L., Yuan, C.A., Huang, D.S.: FAACOSE: a fast adaptive ant colony optimization algorithm for detecting SNP epistasis. Complexity, 2017 (2017)

    Google Scholar 

  18. Wu, J.: Introduction to convolutional neural networks. National Key Lab for Novel Software Technology. Nanjing University. China, 5(23), p. 495 (2017)

    Google Scholar 

  19. Lomonaco, V., et al.: CVPR 2020 continual learning in computer vision competition: approaches, results, current challenges and future directions. Artif. Intell. 303, 103635 (2022)

    Article  MATH  Google Scholar 

  20. Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM International Conference on Multimedia (2015)

    Google Scholar 

  21. Li, Z., et al.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  22. Yuan, L., et al.: Integration of multi-omics data for gene regulatory network inference and application to breast cancer. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(3), 782–791 (2018)

    Article  Google Scholar 

  23. Learning, D.: Deep learning. High-dimensional fuzzy clustering (2020)

    Google Scholar 

  24. Yuan, L., Huang, D.-S.: A network-guided association mapping approach from DNA methylation to disease. Sci. Rep. 9(1), 1–16 (2019)

    Article  Google Scholar 

  25. Yuan, L., et al.: A novel computational framework to predict disease-related copy number variations by integrating multiple data sources. Front. Genet. 12 (2021)

    Google Scholar 

  26. Yuan, L., et al.: A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs. BMC Bioinf. 22(1), 1–18 (2021)

    Article  Google Scholar 

  27. Hellmark, T., Segelmark, M.: Diagnosis and classification of Goodpasture’s disease (anti-GBM). J. Autoimmun. 48, 108–112 (2014)

    Article  Google Scholar 

  28. Selvaraju, R.R., et al.: Grad-CAM: why did you say that? arXiv preprint arXiv:1611.07450 (2016)

  29. Zhang, Y., et al.: Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging. J. Neurosci. Methods 353, 109098 (2021)

    Article  Google Scholar 

  30. Golestaneh, S.A., Karam, L.J.: Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes. In: CVPR (2017)

    Google Scholar 

  31. Chen, L., et al.: Adapting Grad-CAM for embedding networks. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2020)

    Google Scholar 

  32. Choi, J., Choi, J., Rhee, W.: Interpreting neural ranking models using grad-cam. arXiv preprint arXiv:2005.05768 (2020)

  33. Selvaraju, R.R., et al.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  34. Wu, Z., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  35. Joo, H.-T., Kim, K.-J.: Visualization of deep reinforcement learning using grad-CAM: how AI plays atari games? In: 2019 IEEE Conference on Games (CoG). IEEE (2019)

    Google Scholar 

  36. Zheng, H., et al.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  37. Yu, A.W., et al.: Qanet: combining local convolution with global self-attention for reading comprehension. arXiv preprintarXiv:1804.09541 (2018)

  38. Ohgaki, H., Kleihues, P.: Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 170(5), 1445–1453 (2007)

    Article  Google Scholar 

  39. Chen, Y., et al.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  40. Hirschman, I.I., Widder, D.V.: The convolution transform. Courier Corporation (2012)

    Google Scholar 

  41. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)

    Article  Google Scholar 

  42. Chen, L.-C., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  43. Huang, C.-Z.A., et al.: Counterpoint by convolution. arXiv preprint arXiv:1903.07227 (2019)

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant nos. 62002189, 62102200), supported by Natural Science Foundation of Shandong Province, China (Grant nos. ZR2020QF038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, J., Shen, Z., Yuan, L. (2022). Bio-ATT-CNN: A Novel Method for Identification of Glioblastoma. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics