Abstract
Classification of carotid plaque echogenicity in ultrasound images is an important task for identifying plaques prone to rupture, thus for early risk estimation of cardiovascular and cerebrovascular events. However, it is difficult for normal classification methods to distinguish the plaque area and extract the feature of plaques, because the carotid artery plaque area accounts for a very small proportion of the entire ultrasound image, and the plaque boundary is fuzzy. In addition, the image usually needs to be resized before being fed to the neural network, resulting in information loss. In this work, a keypoint-based dual-branch carotid plaque echogenicity classification network (KDPCnet) is proposed to solve those problems. Our model consists of two parts. First, a lightweight sub-network is applied to identify the plaque’s center point. Then, a dual-branch classification sub-network is proposed to integrate global information of the entire ultrasound image and the local detail information of plaques without reducing the resolution of the plaque area and changing the aspect ratio of the plaque. On the dataset of 1898 carotid plaque ultrasound images from the cooperation hospital, the five-fold cross-validation results show that KDPCnet outperforms other advanced classification models and keypoint localization can effectively assist carotid artery plaque echogenicity classification.
This work was supported by the National Nature Science Foundation of China under Grant 61873156.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abd-Ellah, M.K., Khalaf, A.A., Gharieb, R.R., Hassanin, D.A.: Automatic diagnosis of common carotid artery disease using different machine learning techniques. J. Ambient Intell. Hum. Comput. 1–17 (2021)
Christodoulou, C., Pattichis, C., Kyriacou, E., Nicolaides, A.: Image retrieval and classification of carotid plaque ultrasound images. Open Cardiovasc. Imaging J. 2(1), 18–28 (2010)
Dong, X., Yu, J., Zhang, J.: Joint usage of global and local attentions in hourglass network for human pose estimation. Neurocomputing 472, 95–102 (2022)
Ge, J., et al.: Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound. Heart 81(6), 621–627 (1999)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hermus, L., Lefrandt, J.D., Tio, R.A., Breek, J.C., Zeebregts, C.J.: Carotid plaque formation and serum biomarkers. Atherosclerosis 213(1), 21–29 (2010)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Huang, X., et al.: Identication of ultrasonic echolucent carotid plaques using discrete fréchet distance between bimodal gamma distributions. IEEE Trans. Biomed. Eng. 65(5), 949–955 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012)
Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45
Lekadir, K., et al.: A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J. Biomed. Health Inform. 21(1), 48–55 (2016)
Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C., et al.: A multi-scale guided cascade hourglass network for depth completion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 32–40 (2020)
Lin, S., Bai, M., Liu, F., Shen, L., Zhou, Y.: Orthogonalization-guided feature fusion network for multimodal 2d+ 3d facial expression recognition. IEEE Trans. Multimedia 23, 1581–1591 (2020)
Ma, W., Cheng, X., Xu, X., Wang, F., Zhou, R., Fenster, A., Ding, M.: Multilevel strip pooling-based convolutional neural network for the classification of carotid plaque echogenicity. Comput. Math. Methods Med. 2021, 1–13 (2021)
Ma, W., Zhou, R., Zhao, Y., Xia, Y., Fenster, A., Ding, M.: Plaque recognition of carotid ultrasound images based on deep residual network. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 931–934. IEEE (2019)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Payer, C., Stern, D., Feiner, M., Bischof, H., Urschler, M.: Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks. Med. Image Anal. 57, 106–119 (2019)
Peng, Z., et al.: Conformer: local features coupling global representations for visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 367–376 (2021)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2 inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Singh, B., Davis, L.S.: An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tsiaparas, N.N., Golemati, S., Andreadis, I., Stoitsis, J.S., Valavanis, I., Nikita, K.S.: Comparison of multiresolution features for texture classification of carotid atherosclerosis from b-mode ultrasound. IEEE Trans. Inf. Technol. Biomed. 15(1), 130–137 (2010)
Virani, S.S., et al.: Heart disease and stroke statistics—2021 update: a report from the American heart association. Circulation 143(8), e254–e743 (2021)
Wu, J., Xin, J., Yang, X., Sun, J., Xu, D., Zheng, N., Yuan, C.: Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall mri. Med. Phys. 46(12), 5544–5561 (2019)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Xu, T., Takano, W.: Graph stacked hourglass networks for 3d human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16105–16114 (2021)
Zreik, M., Van Hamersvelt, R.W., Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: A recurrent cnn for automatic detection and classification of coronary artery plaque and senosis in coronary CT angiography. IEEE Trans. Med. Imaging 38(7), 1588–1598 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, B., Zhang, W., Xie, J. (2022). KDPCnet: A Keypoint-Based CNN for the Classification of Carotid Plaque. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_71
Download citation
DOI: https://doi.org/10.1007/978-3-031-13829-4_71
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13828-7
Online ISBN: 978-3-031-13829-4
eBook Packages: Computer ScienceComputer Science (R0)