Skip to main content

KDPCnet: A Keypoint-Based CNN for the Classification of Carotid Plaque

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1872 Accesses

Abstract

Classification of carotid plaque echogenicity in ultrasound images is an important task for identifying plaques prone to rupture, thus for early risk estimation of cardiovascular and cerebrovascular events. However, it is difficult for normal classification methods to distinguish the plaque area and extract the feature of plaques, because the carotid artery plaque area accounts for a very small proportion of the entire ultrasound image, and the plaque boundary is fuzzy. In addition, the image usually needs to be resized before being fed to the neural network, resulting in information loss. In this work, a keypoint-based dual-branch carotid plaque echogenicity classification network (KDPCnet) is proposed to solve those problems. Our model consists of two parts. First, a lightweight sub-network is applied to identify the plaque’s center point. Then, a dual-branch classification sub-network is proposed to integrate global information of the entire ultrasound image and the local detail information of plaques without reducing the resolution of the plaque area and changing the aspect ratio of the plaque. On the dataset of 1898 carotid plaque ultrasound images from the cooperation hospital, the five-fold cross-validation results show that KDPCnet outperforms other advanced classification models and keypoint localization can effectively assist carotid artery plaque echogenicity classification.

This work was supported by the National Nature Science Foundation of China under Grant 61873156.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abd-Ellah, M.K., Khalaf, A.A., Gharieb, R.R., Hassanin, D.A.: Automatic diagnosis of common carotid artery disease using different machine learning techniques. J. Ambient Intell. Hum. Comput. 1–17 (2021)

    Google Scholar 

  2. Christodoulou, C., Pattichis, C., Kyriacou, E., Nicolaides, A.: Image retrieval and classification of carotid plaque ultrasound images. Open Cardiovasc. Imaging J. 2(1), 18–28 (2010)

    Article  Google Scholar 

  3. Dong, X., Yu, J., Zhang, J.: Joint usage of global and local attentions in hourglass network for human pose estimation. Neurocomputing 472, 95–102 (2022)

    Article  Google Scholar 

  4. Ge, J., et al.: Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound. Heart 81(6), 621–627 (1999)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hermus, L., Lefrandt, J.D., Tio, R.A., Breek, J.C., Zeebregts, C.J.: Carotid plaque formation and serum biomarkers. Atherosclerosis 213(1), 21–29 (2010)

    Article  Google Scholar 

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  8. Huang, X., et al.: Identication of ultrasonic echolucent carotid plaques using discrete fréchet distance between bimodal gamma distributions. IEEE Trans. Biomed. Eng. 65(5), 949–955 (2017)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012)

    Google Scholar 

  10. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  11. Lekadir, K., et al.: A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J. Biomed. Health Inform. 21(1), 48–55 (2016)

    Article  MathSciNet  Google Scholar 

  12. Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C., et al.: A multi-scale guided cascade hourglass network for depth completion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 32–40 (2020)

    Google Scholar 

  13. Lin, S., Bai, M., Liu, F., Shen, L., Zhou, Y.: Orthogonalization-guided feature fusion network for multimodal 2d+ 3d facial expression recognition. IEEE Trans. Multimedia 23, 1581–1591 (2020)

    Article  Google Scholar 

  14. Ma, W., Cheng, X., Xu, X., Wang, F., Zhou, R., Fenster, A., Ding, M.: Multilevel strip pooling-based convolutional neural network for the classification of carotid plaque echogenicity. Comput. Math. Methods Med. 2021, 1–13 (2021)

    Article  Google Scholar 

  15. Ma, W., Zhou, R., Zhao, Y., Xia, Y., Fenster, A., Ding, M.: Plaque recognition of carotid ultrasound images based on deep residual network. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 931–934. IEEE (2019)

    Google Scholar 

  16. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  17. Payer, C., Stern, D., Feiner, M., Bischof, H., Urschler, M.: Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks. Med. Image Anal. 57, 106–119 (2019)

    Article  Google Scholar 

  18. Peng, Z., et al.: Conformer: local features coupling global representations for visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 367–376 (2021)

    Google Scholar 

  19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2 inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  20. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018)

    Google Scholar 

  21. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  22. Tsiaparas, N.N., Golemati, S., Andreadis, I., Stoitsis, J.S., Valavanis, I., Nikita, K.S.: Comparison of multiresolution features for texture classification of carotid atherosclerosis from b-mode ultrasound. IEEE Trans. Inf. Technol. Biomed. 15(1), 130–137 (2010)

    Article  Google Scholar 

  23. Virani, S.S., et al.: Heart disease and stroke statistics—2021 update: a report from the American heart association. Circulation 143(8), e254–e743 (2021)

    Article  Google Scholar 

  24. Wu, J., Xin, J., Yang, X., Sun, J., Xu, D., Zheng, N., Yuan, C.: Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall mri. Med. Phys. 46(12), 5544–5561 (2019)

    Article  Google Scholar 

  25. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  26. Xu, T., Takano, W.: Graph stacked hourglass networks for 3d human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16105–16114 (2021)

    Google Scholar 

  27. Zreik, M., Van Hamersvelt, R.W., Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: A recurrent cnn for automatic detection and classification of coronary artery plaque and senosis in coronary CT angiography. IEEE Trans. Med. Imaging 38(7), 1588–1598 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Zhang, W., Xie, J. (2022). KDPCnet: A Keypoint-Based CNN for the Classification of Carotid Plaque. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics