Skip to main content

Gait Identification Using Hip Joint Movement and Deep Machine Learning

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2022)

Abstract

Person identification is a challenging problem which has recently received significant interest mainly due to accelerated advances in sensor technologies and machine learning. It offers potential to support diverse applications that includes crime suspect identification, biometric authentication, and missing person identification. Many existing works involving wearable sensors such as accelerometers and gyroscopes either attach a single sensor to the participants’ (i.e., person) trunk or waist to obtain generic movement data or, rely upon a network of many sensors to obtain a full body movement data. However, it is an unsolved challenge to obtain reliable performance through an individual joint’s motion. In this work, we introduce a gait-based person identification method using a Long Short-Term Memory model trained over the unique statistical features extracted from a single hip joint movement. Experiments are conducted with varying configurations of multiple classification models and validation metrics. Our approach outperformed the existing methods and achieved gait identification accuracy of up to 95.65% when evaluated over the purely unseen data samples. We further introduce a simple filtering method which may increase accuracy up to 100% where larger sequences are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nambiar, A., Bernardino, A., Nascimento, J.C.: Gait-based person re-identification : a survey. ACM Comput. Surv. 52(2) (2019). https://doi.org/10.1145/3243043

  2. Khan, W., Badii, A.: Pathological gait abnormality detection and segmentation by processing the hip joints motion data to support mobile gait rehabilitation. Res. Med. Eng. Sci. 7(3), 754–762 (2019). https://doi.org/10.31031/rmes.2019.07.000662

    Article  Google Scholar 

  3. Sheng, W., Li, X.: Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network. Pattern Recogn. 114 (2021). https://doi.org/10.1016/j.patcog.2021.107868

  4. Balazia, M., Sojka, P.: You are how you walk: uncooperative MoCap gait identification for video surveillance with incomplete and noisy data. In: IEEE International Joint Conference on Biometrics, IJCB 2017, vol. 2018, pp. 208–215, January 2018. https://doi.org/10.1109/BTAS.2017.8272700

  5. Connor, P.C.: Comparing and combining underfoot pressure features for shod and unshod gait biometrics. In: 2015 IEEE International Symposium on Technologies for Homeland Security, HST 2015 (2015). https://doi.org/10.1109/THS.2015.7225338

  6. Vera-Rodriguez, R., Fierrez, J., Mason, J.S.D., Orteua-Garcia, J.: A novel approach of gait recognition through fusion with footstep information (2013). https://doi.org/10.1109/ICB.2013.6613014

  7. De Carvalho, R.L., Rosa, P.F.F.: Identification system for smart homes using footstep sounds. In: IEEE International Symposium on Industrial Electronics, pp. 1639–1644 (2010). https://doi.org/10.1109/ISIE.2010.5637551

  8. Shoji, Y., Takasuka, T., Yasukawa, H.: Personal identification using footstep detection. In: International Symposium on Intelligent Signal Processing and Communication Systems, pp. 43–47 (2004). https://doi.org/10.1109/ISPACS.2004.1439012

  9. Aydemir, E., Tuncer, T., Dogan, S., Unsal, M.: A novel biometric recognition method based on multi kernelled bijection octal pattern using gait sound. Appl. Acoust. 173, 107701 (2021). https://doi.org/10.1016/j.apacoust.2020.107701

    Article  Google Scholar 

  10. Suutala, J., Röning, J.: Towards the adaptive identification of walkers: automated feature selection of footsteps using distinction-sensitive LVQ. In: Proceedings of International Workshop on Processing Sensory Information for Proactive Systems (PSIPS 2004), pp. 1–7 (2004). http://www.ee.oulu.fi/research/isg/files/pdf/pdf_515.pdf

  11. Rodriguez, R.V., Lewis, R.P., Evans, N.W.D., Mason, J.S.D.: Optimisation of geometric and holistic feature extraction approaches for a footstep biometric verification system (2007)

    Google Scholar 

  12. Vera-Rodriguez, R., Evans, N.W.D., Lewis, R.P., Fauve, B., Mason, J.S.D.: An experimental study on the feasibility of footsteps as a biometric. In: European Signal Processing Conference, pp. 748–752 (2007). https://doi.org/10.1109/ACCESS.2019.2939613

  13. Geiger, J.T., Kneißl, M., Schuller, B., Rigoll, G.: Acoustic gait-based person identification using hidden Markov models. In: MAPTRAITS 2014 - Proceedings of the 1st ACM Audio/Video Mapping Personality Traits Challenge and Workshop, Co-located with ICMI 2014, pp. 25–30 (2014). https://doi.org/10.1145/2668024.2668027

  14. Rodriguez, R.V., Evans, N., Mason, J.S.D.: Footstep recognition. In: Encyclopedia of Biometrics, pp. 693–700 (2015)

    Google Scholar 

  15. Castiglia, S.F., et al.: Identification of gait unbalance and fallers among subjects with cerebellar ataxia by a set of trunk acceleration-derived indices of gait. Cerebellum 2022, 1–13 (2021). https://doi.org/10.1007/s12311-021-01361-5

    Article  Google Scholar 

  16. Hajati, N., Rezaeizadeh, A.: A wearable pedestrian localization and gait identification system using Kalman filtered inertial data. IEEE Trans. Instrum. Meas. 70 (2021). https://doi.org/10.1109/TIM.2021.3073440

  17. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  18. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35395-6_30

    Chapter  Google Scholar 

  19. De Marsico, M., Mecca, A.: A survey on gait recognition via wearable sensors. ACM Comput. Surv. 52(4) (2019). https://doi.org/10.1145/3340293

  20. Topham, L., Khan, W., Al-Jumeily, D., Hussain, A.J.: Human body pose estimation for gait identification: a comprehensive survey of datasets and models. ACM Comput. Surv. (2022)

    Google Scholar 

  21. MOTI: MOTI. MOTI (2021). http://moti.dk. Accessed 12 Apr 2022

  22. Ahmad, N., Ghazilla, R.A.R., Khairi, N.M., Kasi, V.: Reviews on various inertial measurement unit (IMU) sensor applications. Int. J. Signal Process. Syst. 1(2), 256–262 (2013). https://doi.org/10.12720/ijsps.1.2.256-262

    Article  Google Scholar 

  23. Victorino, M.N., Jiang, X. Menon, C.: Wearable technologies and force myography for healthcare. In: Wearable Technology in Medicine and Health Care, pp. 135–152. Elsevier Inc. (2018)

    Google Scholar 

  24. Witte, R.S., Witte, J.S.: Statistics, 11th edn. Wiley, New York (2021)

    MATH  Google Scholar 

  25. Kleanthous, N., Hussain, A.J., Khan, W., Sneddon, J., Al-Shamma’a, A., Liatsis, P.: “A survey of machine learning approaches in animal behavior. Neurocomputing 491, 442–463 (2022). https://doi.org/10.1016/j.neucom.2021.10.126

    Article  Google Scholar 

  26. Kleanthous, N., Hussain, A.J., Khan, W., Liatsis, P.: A new machine learning based approach to predict Freezing of Gait. Pattern Recogn. Lett. 140, 119–126 (2020). https://doi.org/10.1016/j.patrec.2020.09.011

    Article  Google Scholar 

  27. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  28. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Houdt, G., Mosquera, C., Nápoles, G.: A review on the long short-term memory model. Artif. Intell. Rev. 53(8), 5929–5955 (2020). https://doi.org/10.1007/s10462-020-09838-1

    Article  Google Scholar 

  30. Pisner, D.A., Schnyer, D.M.: Support vector machine. In: Machine Learning: Methods and Applications to Brain Disorders, pp. 101–121. Elsevier Inc. (2019)

    Google Scholar 

  31. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  Google Scholar 

  32. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44(8), 1761–1776 (2011). https://doi.org/10.1016/j.patcog.2011.01.017

    Article  Google Scholar 

  33. Koklu, M., Ozkan, I.A.: Multiclass classification of dry beans using computer vision and machine learning techniques. Comput. Electron. Agric. 174, 105507 (2020)

    Article  Google Scholar 

  34. Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008). https://doi.org/10.1038/nbt1386

    Article  Google Scholar 

  35. Samet, H.: K-nearest neighbor finding using MaxNearestDist. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 243–252 (2008). https://doi.org/10.1109/TPAMI.2007.1182

    Article  Google Scholar 

  36. Jiang, L., Cai, Z., Wang, D., Jiang, S.: Survey of improving K-nearest-neighbor for classification. In: Proceedings of Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, vol. 1, pp. 679–683 (2007). https://doi.org/10.1109/FSKD.2007.552

  37. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Article  Google Scholar 

  38. Imandoust, S.B., Bolandraftar, M.: Application of K-Nearest Neighbor (KNN) approach for predicting economic events: theoretical background. Int. J. Eng. Res. Appl. 3(5), 605–610 (2013)

    Google Scholar 

  39. Gruosso, M., Capece, N., Erra, U.: Human segmentation in surveillance video with deep learning. Multimedia Tools Appl. 80(1), 1175–1199 (2020). https://doi.org/10.1007/s11042-020-09425-0

    Article  Google Scholar 

  40. Bhatti, M.T., Khan, M.G., Aslam, M., Fiaz, M.J.: Weapon detection in real-time CCTV videos using deep learning. IEEE Access 9, 34366–34382 (2021). https://doi.org/10.1109/ACCESS.2021.3059170

    Article  Google Scholar 

  41. Gadaleta, M., Merelli, L., Rossi, M.: Human authentication from ankle motion data using convolutional neural networks (2016). https://doi.org/10.1109/SSP.2016.7551815

  42. San-Segundo, R., Echeverry-Correa, J.D., Salamea-Palacios, C., Lebai Lutfi, S., Pardo, J.M.: I-vector analysis for Gait-based Person Identification using smartphone inertial signals. Pervasive Mob. Comput. 38, 140–153 (2017). https://doi.org/10.1016/j.pmcj.2016.09.007

  43. De Marsico, M., De Pasquale, D., Mecca, A.: Embedded accelerometer signal normalization for cross-device gait recognition. Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik, vol. P-260 (2016). https://doi.org/10.1109/BIOSIG.2016.7736920

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Topham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Topham, L., Khan, W., Al-Jumeily, D., Waraich, A., Hussain, A. (2022). Gait Identification Using Hip Joint Movement and Deep Machine Learning. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13832-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13831-7

  • Online ISBN: 978-3-031-13832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics