Abstract
As the existing publicly license plate recognition (LPR) datasets available for training are restricted and almost non-existent in some countries, for example, some developing countries. In this paper, first we present the first Yemeni License Plate dataset (Y-LPR dataset) includes vehicles and license plate images for Yemeni license plate detection and recognition. Second, we propose a new LPR method for license plate detection and Recognition. It consists of two key stages: First, License plate detection from images based on the latest state-of-the-art deep learning-based detector which is YOLOv5. Second, Yemeni Character and number recognition based on the CRNN model. Experimental results show that our method is effective in detecting and recognizing license plates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shashirangana, J., et al.: Automated license plate recognition: a survey on methods and techniques. IEEE Access 9, 11203–11225 (2021)
Wang, W., et al.: A light CNN for end-to-end car license plates detection and recognition. IEEE Access 7, 173875–173883 (2019)
Hoang, V.-T., et al.: 3D facial landmarks detection for intelligent video systems. IEEE Trans. Industr. Inf. 17(1), 578–586 (2021)
Shen, Z., et al.: A deep learning model for RNA-protein binding preference prediction based on hierarchical LSTM and attention network. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, p. 1 (2020)
Wu, Y., et al.: Person Re-identification by Multi-scale Feature Representation Learning with Random Batch Feature Mask. IEEE Trans. Cogn. Dev. Syst. 13(4), 865–874 (2020)
Wu, D., et al.: Attention deep model with multi-scale deep supervision for person re-identification. IEEE Trans. Emerging Topics Comput. Intell. 5(1), 70–78 (2021)
Wu, D., et al.: Deep learning-based methods for person re-identification: a comprehensive review. Neurocomputing 337, 354–371 (2019)
Wu, D., et al.: A novel deep model with multi-loss and efficient training for person re-identification. Neurocomputing 513, 662–674 (2019)
Wang, H., et al.: Robust Korean license plate recognition based on deep neural networks. Sensors (Basel) 21(12), 4140 (2021)
Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn. Artif. Intell. 13(7), 1083–1101 (1999)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Li, Z., et al.: License Plate Detection and Recognition Technology for Complex Real Scenarios. In: Huang, D.-S., Bevilacqua, V., Hussain, A. (eds.) ICIC 2020. LNCS, vol. 12463, pp. 241–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60799-9_21
Selmi, Z., et al.: DELP-DAR system for license plate detection and recognition. Pattern Recogn. Lett. 129, 213–223 (2020)
Zherzdev, S., Gruzdev, A.: LPRNet: license plate recognition via deep neural networks. arXiv:1806.10447 (2018)
Zhang, M., et al., Chinese license plates recognition method based on a robust and efficient feature extraction and BPNN algorithm. In: Journal of Physics: Conference Series, vol. 1004 (2018)
Xu, Z., et al.: Towards end-to-end license plate detection and recognition: a large dataset and baseline. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 261–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_16
Yang, Y., Li, D., Duan, Z.: Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features. IET Intel. Transport Syst. 12(3), 213–219 (2018)
Zhen-Xue, C., et al.: Automatic license-plate location and recognition based on feature salience. IEEE Trans. Veh. Technol. 58(7), 3781–3785 (2009)
Li, H., et al.: Reading car license plates using deep neural networks. Image Vis. Comput. 72, 14–23 (2018)
Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2017)
Jaderberg, M., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems (NIPS 2015), vol. 28 (2015)
Silva, S.M., Jung, C.R.: Real-time license plate detection and recognition using deep convolutional neural networks. J. Vis. Commun. Image Represent. 71, 102773 (2020)
Selmi, Z., Ben Halima, M., Alimi, A.M.: Deep learning system for automatic license plate detection and recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), pp. 1132–1138 (2017)
Liang, X., Wu, D., Huang, D.-S.: Image co-segmentation via locally biased discriminative clustering. IEEE Trans. Knowl. Data Eng. 31(11), 2228–2233 (2019)
Lianga, X., Zhua, L., Huang, D.-S.: Multi-task ranking SVM for image cosegmentaiton. Neurocomputing 247, 126–136 (2017)
Hendry, Chen, R.-C.: Automatic license plate recognition via sliding-window darknet-YOLO deep learning. Image Vis. Comput. 87, 47–56 (2019)
Hsu, G.-S., Chen, J.-C., Chung, Y.-Z.: Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2013)
Chen, S.-L., et al.: Simultaneous end-to-end vehicle and license plate detection with multi-branch attention neural network. IEEE Trans. Intell. Transp. Syst. 21(9), 3686–3695 (2020)
Xie, L., et al.: A new CNN-based method for multi-directional car license plate detection. IEEE Trans. Intell. Transp. Syst. 19(2), 507–517 (2018)
Lu, Q., Liu, Y., Huang, J., Yuan, X., Hu, Q.: License plate detection and recognition using hierarchical feature layers from CNN. Multimedia Tools Appl. 78(11), 15665–15680 (2018). https://doi.org/10.1007/s11042-018-6889-1
Wang, Q.: License plate recognition via convolutional neural networks. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, pp. 926–929. IEEE (2017)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA. pp. 580–587. IEEE (2014)
Girshick, R.: Fast_R-CNN__2015_paper. In: ICCV, pp. 1440–1448. IEEE (2015)
Redmon, J., et al.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Huang, Q., Cai, Z., Lan, T.: A single neural network for mixed style license plate detection and recognition. IEEE Access 9, 21777–21785 (2021)
Tian, Z., et al.: FCOS: fully convolutional one-stage object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)
Tao, T., et al.: Object detection-based license plate localization and recognition in complex environments. Transp. Res. Record: J. Transp. Res. Board 2674(12), 212–223 (2020)
Zhuang, J., Hou, S., Wang, Z., Zha, Z.-J.: Towards human-level license plate recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 314–329. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_19
Laroca, R., et al.: An efficient and layout-independent automatic license plate recognition system based on the YOLO detector. IET Intel. Transport Syst. 15(4), 483–503 (2021)
Laroca, R., et al.: A robust real-time automatic license plate recognition based on the YOLO detector. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE: Rio de Janeiro, Brazil (2018)
Kessentini, Y., et al.: A two-stage deep neural network for multi-norm license plate detection and recognition. Expert Syst. Appl. 136, 159–170 (2019)
Online: A. (2021). https://github.com/ultralytics/yolov5
Shu, X., Tang, J.: Hierarchical long short-term concurrent memory for human interaction recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 1110–1118 (2021)
Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arxiv.org/1508.01991 (2015)
Henry, C., Ahn, S.Y., Lee, S.-W.: Multinational license plate recognition using generalized character sequence detection. IEEE Access 8, 35185–35199 (2020)
Omar, N., Sengur, A., Al-Ali, S.G.S.: Cascaded deep learning-based efficient approach for license plate detection and recognition. Expert Syst. Appl. 149, 113280 (2020)
Tourani, A., et al.: A Robust deep learning approach for automatic Iranian vehicle license plate detection and recognition for surveillance systems. IEEE Access 8, 201317–201330 (2020)
Acknowledgements
This work was supported by the grant of National Key R&D Program of China (No. 2018AAA0100100 & 2018YFA0902600) and partly supported by National Natural Science Foundation of China (Grant nos. 61732012, 62002266, 61932008, and 62073231), and Introduction Plan of High-end Foreign Experts (Grant no. G2021033002L) and, respectively, supported by the Key Project of Science and Technology of Guangxi (Grant no. 2021AB20147), Guangxi Natural Science Foundation (Grant nos. 2021JJA170204 & 2021JJA170199) and Guangxi Science and Technology Base and Talents Special Project (Grant nos. 2021AC19354 & 2021AC19394).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Taleb, H., Li, Z., Yuan, C., Wu, H., Zhao, X., Ghanem, F.A. (2022). An Effective Method for Yemeni License Plate Recognition Based on Deep Neural Networks. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-13832-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13831-7
Online ISBN: 978-3-031-13832-4
eBook Packages: Computer ScienceComputer Science (R0)