Skip to main content

Research on Quantitative Optimization Method Based on Incremental Optimization

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13395))

Included in the following conference series:

  • 1622 Accesses

Abstract

Existing automatic mixed-precision quantization algorithms focus on search algorithms, ignoring the huge search space and inaccurate performance evaluation criteria. In order to narrow the search space, this paper analyzes the influence of quantization truncation error and rounding error on the performance of quantization model from the perspective of progressive optimization. It was found that for a given model, the quantization truncation error is a constant, while the quantization rounding error is a function of the quantization accuracy. Based on this, this paper proposes a finite-error progressive optimization quantization algorithm. In order to solve the problem of inaccurate performance evaluation criteria, based on quantitative loss analysis and reasoning, this paper proposes a performance evaluation criteria based on Hessian matrix. Adam’s second-order gradient is used as proxy information to reduce the computational complexity of Hessian matrix. The method obtains a model that satisfies the hardware constraints in an end-to-end manner. Rigorous mathematical derivation and comparative experiments have proved the rationality of the algorithm, and its performance far exceeds the current mainstream algorithms. For example, on the ResNet-18 network, while achieving a search space reduction of 1019x, the computational efficiency of the model performance evaluation standard is increased by 12 times, and the mixed precision model only loses 0.3% of performance, while achieving a 5.7x compression gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, Y., Wang, Y.-X., Liberty, E.: ProxQuant: quantized neural networks via proximal operators. arXiv preprint arXiv:1810.00861 (2018)

  2. Chen, Y., et al.: Joint neural architecture search and quantization. arXiv preprint arXiv:1811.09426 (2018)

  3. Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.-J., Srinivasan, V., Gopalakrishnan, K.: PACT: parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018)

  4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or −1. arXiv preprint arXiv:1602.02830 (2016)

  5. Dong, Z., Yao, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: HAWQ: Hessian AWare Quantization of neural networks with mixed-precision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 293–302 (2019)

    Google Scholar 

  6. Gong, R., et al.: Differentiable soft quantization: bridging full-precision and low-bit neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4852–4861 (2019)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hu, Q., Wang, P., Cheng, J.: From hashing to CNNs: training binary weight networks via hashing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Jung, S., et al.: Learning to quantize deep networks by optimizing quantization intervals with task loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4350–4359 (2019)

    Google Scholar 

  11. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  13. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  14. Li, Y., et al.: BRECQ: pushing the limit of post-training quantization by block reconstruction. arXiv preprint arXiv:2102.05426 (2021)

  15. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  16. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Liu, C., et al.: Circulant binary convolutional networks: enhancing the performance of 1-bit DCNNs with circulant back propagation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2691–2699 (2019)

    Google Scholar 

  18. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-Real Net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44

    Chapter  Google Scholar 

  19. Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural networks with real-to-binary convolutions. arXiv preprint arXiv:2003.11535 (2020)

  20. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  21. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  23. Wan, D., et al.: TBN: convolutional neural network with ternary inputs and binary weights. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 322–339. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_20

    Chapter  Google Scholar 

  24. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: HAQ: hardware-aware automated quantization with mixed precision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8612–8620 (2019)

    Google Scholar 

  25. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    Article  MATH  Google Scholar 

  26. Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., Keutzer, K.: Mixed precision quantization of ConvNets via differentiable neural architecture search. arXiv preprint arXiv:1812.00090 (2018)

  27. Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 373–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_23

    Chapter  Google Scholar 

  28. Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., Tian, Q.: Multinomial distribution learning for effective neural architecture search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1304–1313 (2019)

    Google Scholar 

  29. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Huang, Y., Gao, L. (2022). Research on Quantitative Optimization Method Based on Incremental Optimization. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13832-4_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13831-7

  • Online ISBN: 978-3-031-13832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics