Skip to main content

Automatic Shape Matching Using Improved Whale Optimization Algorithm with Atomic Potential Function

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13395))

Included in the following conference series:

  • 1703 Accesses

Abstract

This paper an improved whale optimization algorithm (IWOA) with atomic potential matching (APM) for shape matching is proposed. The optimization process of shape matching is considered as a numerical optimization problem which can be conventionally exploited by the optimization algorithms. We improved whale optimization algorithm (WOA) where our modifications add the local pollination phase from the flower pollination algorithm. Then the IWOA based atomic potential matching (APM) model for searching the optimal shape matching. The comparative experiments with other algorithms for solving three different examples of shape matching problems demonstrate the feasibility and effectiveness. Meanwhile, the proposed shape matching algorithm proved to be superior to the comparative others swarm intelligence optimization algorithms, improved quality of results in all examples and significantly improve convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon, K., Sheorey, S., Jacobs, D., Basri, R.: A linear elastic force optimization model for shape matching. J. Math. Imaging Vis. 51(2), 260–278 (2014). https://doi.org/10.1007/s10851-014-0520-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Dickmanns, E.D., Mysliwetz, B., Christians, T.: An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles. IEEE Trans. Syst. Man Cybern. 20, 1273–1284 (1990)

    Article  Google Scholar 

  3. Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. Comput. Vis. Image Underst. 117, 633–659 (2013)

    Article  Google Scholar 

  4. Temel, S., Unaldi, N.: Opportunities and challenges of terrain aided navigation systems for aerial surveillance by unmanned aerial vehicles. In: Asari, V.K. (ed.) Wide Area Surveillance. AVR, vol. 6, pp. 163–177. Springer, Heidelberg (2014). https://doi.org/10.1007/8612_2012_6

    Chapter  Google Scholar 

  5. Yang, F., et al.: Non-rigid multi-modal medical image registration by combining L-BFGS-B with cat swarm optimization. Inf. Sci. 316, 440–456 (2015)

    Article  Google Scholar 

  6. Heinrich, M.P., et al.: Deformable image registration by combining uncertainty estimates from supervoxel belief propagation. Med. Image Anal. 27, 57–71 (2016)

    Article  Google Scholar 

  7. Guo, W., Xia, X., Wang, X.: Variational approximate inferential probability generative model for ship recognition using remote sensing data. Optik Int. J. Light Electron Opt. 126, 4004–4013 (2015)

    Article  Google Scholar 

  8. Li, B.: Atomic potential matching: an evolutionary target recognition approach based on edge features. Optik Int. J. Light Electron Opt. 127, 3162–3168 (2016)

    Article  Google Scholar 

  9. Dao, M.S., Natale, F.G.B.D., Massa, A.: Edge potential functions (EPF) and genetic algorithms (GA) for edge-based matching of visual objects. IEEE Trans. Multimedia 9, 120–135 (2006)

    Article  Google Scholar 

  10. Li, C., Duan, H.: Target detection approach for UAVs via improved Pigeon-inspired Optimization and Edge Potential Function. Aerosp. Sci. Technol. 39, 352–360 (2014)

    Article  Google Scholar 

  11. Ghasab, M.A.J., et al.: Feature decision-making ant colony optimization system for an automated recognition of plant species. Expert Syst. Appl. 42, 2361–2370 (2015)

    Article  Google Scholar 

  12. Martinek, M., Grosso, R., Greiner, G.: Interactive partial 3D shape matching with geometric distance optimization. Vis. Comput. 31(2), 223–233 (2014). https://doi.org/10.1007/s00371-014-1040-4

    Article  Google Scholar 

  13. Cui, Z., Gao, X.: Theory and applications of swarm intelligence. Neural Comput. Appl. 21, 205–206 (2012)

    Article  Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948”

    Google Scholar 

  15. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996)

    Article  Google Scholar 

  16. Yang, X.-S.: Multi-objective firefly algorithm for continuous optimization. Eng. Comput. 29, 175–184 (2013)

    Article  Google Scholar 

  17. Mirjalili, S., Lewis, A.: Grey wolf optimizer. Adv. Eng. 69, 46–61 (2014)

    Google Scholar 

  18. Yang, X.S., Suash, D.: Cuckoo search via levy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE, New York (2009)

    Google Scholar 

  19. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  20. Mirghasemi, S., Sadoghiyazdi, H., Lotfizad, M.: A target-based color space for sea target detection. Appl. Intell. 36, 960–978 (2012)

    Article  Google Scholar 

  21. Zhou, Y., Zhang, S., Luo, Q., Wen, C.: Using flower pollination algorithm and atomic potential function for shape matching. Neural Comput. Appl. 29(6), 21–40 (2016). https://doi.org/10.1007/s00521-016-2524-0

    Article  Google Scholar 

  22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  23. Jangir, P., et al.: Training multi-layer perceptron in neural network using whale optimization algorithm. Indian J. Sci. Technol. 9, 28–36 (2016)

    Google Scholar 

  24. Oliva, D., Aziz, M.A.E., Hassanien, A.E.: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl. Energy 200, 141–154 (2017)

    Article  Google Scholar 

  25. Hu, H., Bai, Y., Xu, T.: Improved whale optimization algorithms based on inertia weights and theirs applications. Int. J. Circuits Syst. Signal Process. 11, 12–26 (2017)

    Google Scholar 

  26. Trivedi, I.N., Jangir, P., Kumar, A., Jangir, N., Totlani, R.: A novel hybrid PSO–WOA algorithm for global numerical functions optimization. In: Bhatia, S.K., Mishra, K.K., Tiwari, S., Singh, V.K. (eds.) Advances in Computer and Computational Sciences. AISC, vol. 554, pp. 53–60. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-3773-3_6

    Chapter  Google Scholar 

  27. Jangir, P., et al.: A novel adaptive whale optimization algorithm for global optimization. Indian J. Sci. Technol. 9, 38 (2016)

    Google Scholar 

  28. Kaveh, A., Ghazaan, M.I.: Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mech. Based Des. Struct. Mach. 45, 345–362 (2017)

    Article  Google Scholar 

  29. Mafarja, M.M., Mirjalili, S.: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017)

    Article  Google Scholar 

  30. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  31. Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. Int. J. Image Process. 3, 1–11 (2009)

    Google Scholar 

  32. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1, 80–83 (1994)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Science Foundation of China under Grant No. 62066005, U21A20464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfei Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Y., Ling, Y., Luo, Q., Zhou, Y. (2022). Automatic Shape Matching Using Improved Whale Optimization Algorithm with Atomic Potential Function. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13832-4_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13831-7

  • Online ISBN: 978-3-031-13832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics