Skip to main content

Wearable Ultrasound Interface for Prosthetic Hand Manipulation

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Ultrasound can non-invasively detect muscle deformations, which has great potential applications in prosthetic hand control. This research developed a miniaturized ultrasound device that could be integrated into a prosthetic hand socket. This compact system included four A-mode ultrasound transducers, a signal processing module, and a prosthetic hand control module. The size of the ultrasound system was 65 * 75 * 25 mm, weighing only 85 g. For the first time, we integrated the ultrasound system into a prosthetic hand socket to evaluate its performance in practical prosthetic hand control. We designed an experiment to perform six commonly used gestures, and the classification accuracy was \(95.33\%\,\pm \, 7.26\%\) for a participant. These experimental results demonstrated the efficacy of the designed prosthetic system based on the miniaturized A-mode ultrasound device, paving the way for an effective HMI system that could be widely used in prosthetic hand control.

This work was supported by the China National Key R &D Program (Grant No. 2020YFC207800), Shanghai Pujiang Program (Grant No. 20PJ1408000), the National Natrual Science Foundation of China (Grant No. 52175023), and the Guangdong Science and Technology Research Council (Grant 2020B1515120064).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, S.: MO-F-220-02: imaging educational course - ultrasound miniaturization. Med. Phys. 38(6), 3732–3732 (2011)

    Article  Google Scholar 

  2. Loram, I.D., Maganaris, C.N., Lakie, M.: Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. J. Appl. Physiol. 100(4), 1311–1323 (2006)

    Article  Google Scholar 

  3. Botter, A., Vieira, T.M.M., Loram, I.D., Merletti, R., Hodson-Tole, E.F.: A novel system of electrodes transparent to ultrasound for simultaneous detection of myoelectric activity and B-mode ultrasound images of skeletal muscles. J. Appl. Physiol. 115(8), 1203–1214 (2013)

    Article  Google Scholar 

  4. Shi, J., Guo, J.Y., Hu, S.X., Zheng, Y.P.: Recognition of finger flexion motion from ultrasound image: a feasibility study. Ultrasound Med. Biol. 38(10), 1695–704 (2012)

    Article  Google Scholar 

  5. Akhlaghi, N., et al.: Real-time classification of hand motions using ultrasound imaging of forearm muscles. IEEE Trans. Biomed. Eng. 63(8), 1687–98 (2016)

    Article  Google Scholar 

  6. Castellini, C., Passig, G., Zarka, E.: Using ultrasound images of the forearm to predict finger positions. IEEE Trans. Neural Syst. Rehabil. Eng. 20(6), 788–797 (2012)

    Article  Google Scholar 

  7. Bimbraw, K., Nycz, C.J., Schueler, M., Zhang, Z., Zhang, H.K.: Prediction of Metacarpophalangeal joint angles and Classification of Hand configurations based on Ultrasound Imaging of the Forearm. arXiv:2109.11093 [cs] (2021)

  8. Huang, Y., Yang, X., Li, Y., Zhou, D., He, K., Liu, H.: Ultrasound-based sensing models for finger motion classification. IEEE J. Biomed. Health Inform. 22(5), 1395–1405 (2018)

    Article  Google Scholar 

  9. Manbachi, A., Cobbold, R.S.C.: Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 19(4), 187–196 (2011)

    Article  Google Scholar 

  10. Mason, W.P.: Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 70(6), 1561–1566 (1980)

    Article  Google Scholar 

  11. Huang, Y., Englehart, K.B., Hudgins, B., Chan, A.D.: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng. 52(11), 1801–1811 (2005)

    Article  Google Scholar 

  12. Kevin Englehart, K.B., Englehart, K., Englehart, B.H., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003)

    Article  Google Scholar 

  13. Aldrich, J.E.: Basic physics of ultrasound imaging. Critical Care Med. 35(Suppl), S131–S137 (2007)

    Article  Google Scholar 

  14. Waris, A., Niazi, I.K., Jamil, M., Englehart, K., Jensen, W., Kamavuako, E.N.: Multiday evaluation of techniques for EMG-based classification of hand motions. IEEE J. Biomed. Health Inform. 23(4), 1526–1534 (2019)

    Article  Google Scholar 

  15. Narayan, Y., Mathew, L., Chatterji, S.: SEMG signal classification with novel feature extraction using different machine learning approaches. J. Intell. Fuzzy Syst. 35, 1–11 (2018)

    Google Scholar 

  16. Parker, P., Englehart, K., Hudgins, B.: Myoelectric signal processing for control of powered limb prostheses. J. Electromyogr. Kinesiol. 16(6), 541–548 (2006)

    Article  Google Scholar 

  17. He, J., Luo, H., Jia, J., Yeow, J.T.W., Jiang, N.: Wrist and finger gesture recognition with single-element ultrasound signals: a comparison with single-channel surface electromyogram. IEEE Trans. Biomed. Eng. 66(5), 1277–1284 (2019)

    Article  Google Scholar 

  18. Zeng, J., Zhou, Y., Yang, Y., Yan, J., Liu, H.: Fatigue-sensitivity comparison of sEMG and a-mode ultrasound based hand gesture recognition. IEEE J. Biomed. Health Inform. 26, 1–8 (2021)

    Google Scholar 

  19. Piech, D.K., Kay, J.E., Boser, B.E., Maharbiz, M.M.: Rodent wearable ultrasound system for wireless neural recording. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 221–225 (2017)

    Google Scholar 

  20. Protopappas, V., Baga, D., Fotiadis, D., Likas, A., Papachristos, A., Malizos, K.: An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones. IEEE Trans. Biomed. Eng. 52(9), 1597–1608 (2005)

    Article  Google Scholar 

  21. Yang, X., Chen, Z., Hettiarachchi, N., Yan, J., Liu, H.: A wearable ultrasound system for sensing muscular morphological deformations. IEEE Trans. Syst. Man Cybern. Syst. 51, 1–10 (2019)

    Google Scholar 

  22. Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., Wang, T.: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194, 87–94 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Meng or Honghai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, Z. et al. (2022). Wearable Ultrasound Interface for Prosthetic Hand Manipulation. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics