Skip to main content

Simulation Study of Wireless Coverage in Straight Long Corridors on Container Ship Deck

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2560 Accesses

Abstract

A wireless coverage simulation based on the ray tracing method is constructed to realize the wireless coverage prediction of the straight long corridor on the container ship deck. The ray reflection model based on the reverse algorithm of the ray tracing method is established to realize the simulation calculation of the point-to-point propagation path. Referring to the recommendations given by the International Telecommunication Union, the Fresnel loss of the straight long corridors and the first Fresnel loss point are calculated, and the ray reflection model is effectively corrected. The least square method is used to fit the double slope of the simulation curve, and the loss formula of the straight long corridors on the deck is obtained. Through experimental simulation, the path loss factors of the fully enclosed corridor are 1.248 and 3.245, and the path loss factors of the semi-closed corridor are 1.251 and 3.444. The simulation results agree with the general conclusions of the ITU recommendation. The simulation can provide the prediction of wireless coverage effect in the design of container ships and provide guidance for the layout design and optimization of base stations of the straight long corridor on container ship deck with different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athanasiadou, G.E., Nix, A.R., McGeehan, J.P.: A ray tracing algorithm for microcellular and indoor propagation modeling. Antennas Propag. 2, 231–235 (1995)

    Google Scholar 

  2. Rizki, K., WagenJ, F., Gardiol, F.: Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments. IEEE Trans. Veh. Technol. 46(2), 508–518 (1997)

    Article  Google Scholar 

  3. Rao, T.R., Balachander, D., Tiwari, N.: Short-range near floor path gain measurements in indoor corridors at UHF for wireless sensor communications. In: IEEE International Conference on Communication Systems. IEEE (2013)

    Google Scholar 

  4. Sun, R., Song, K., Tao, C., et al.: Research of radio channel characteristics under tunnel scenario. J. China Railw. Soc. 39(2), 58–66 (2017)

    Google Scholar 

  5. Zhang, S.: Study of the law of radio ray transmission in tunnel. Chin. J. Radio Sci. 17(2), 114–118 (2002)

    Google Scholar 

  6. Jiang, Y., Zheng, G., Yin, X., et al.: Performance study of millimeter-wave MIMO channel in subway tunnel using directional antennas. IET Microwaves Antennas Propag. 12(5), 833–839 (2017)

    Article  Google Scholar 

  7. Song, K.: Simulation and analysis of radio channel characteristic in tunnel. Beijing Jiaotong University (2017)

    Google Scholar 

  8. El Khaled, M., Fortier, P., Ammari, M.L.: A performance study of line-of-sight millimeter-wave underground mine channel. IEEE Antennas Wirel. Propag. Lett. 13, 1148–1151 (2014)

    Article  Google Scholar 

  9. Batalha, I.S., Lopes, A.V.R., Jasmine, J., et al.: Indoor corridor and office propagation measurements and channel models at 8, 9, 10 and 11 GHz. IEEE Access 7, 55005–55021 (2019)

    Article  Google Scholar 

  10. Wang, Y., Chen, Y., Sun, Y.: Construction and simulation of the path loss model for mine UWB. J. Taiyuan Univ. Technol. (2012)

    Google Scholar 

  11. Remley, K.A., Anderson, H.R., Weisshar, A.: Improving the accuracy of ray-tracing techniques for indoor propagation modeling. IEEE Trans. Veh. Technol. 49(6), 2350–2358 (2000)

    Article  Google Scholar 

  12. Chen, S.-H.: An SBR/image approach for radiowave propagation in indoor environments with metallic furniture. IEEE Trans. Antennas Propag. 45(1), 98–106 (1997)

    Article  Google Scholar 

  13. Ying, W., Zhang, Z.W.: Study on the propagation characteristic of the electromagnetic waves in limited space. Shanxi Electron. Technol. (2011)

    Google Scholar 

  14. Cheng, T., You, M., Tan, Z., et al.: Radio channel character in tunnels based on theray-tracing method. J. Beijing Jiaotong Univ. (2016)

    Google Scholar 

  15. Yan, C., Ge, L.-H., Fan, X.P., et al.: Simulation and analysis of radio wave propagation characteristics in ship Cabin. J. Shanxi Datong Univ. (Nat. Sci. Ed.) 34(6), 17–20 (2018)

    Google Scholar 

Download references

Acknowledgment

This manuscript is supported by National Key Research and Development Program (2019YFB1600600).

This manuscript is supported by the Natural Science Foundation of Fujian Province of China (2022J01131710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Han, B. (2022). Simulation Study of Wireless Coverage in Straight Long Corridors on Container Ship Deck. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics