Skip to main content

Deep Motion Flow Estimation for Monocular Endoscope

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2716 Accesses

Abstract

For monocular endoscope motion estimation, traditional algorithms often suffer from poor robustness when encountering uninformative or dark frames since they only use prominent image features. In contrast, deep learning methods based on an end-to-end framework have achieved promising performance by estimating the 6-DOF pose directly. However, the existing techniques overly depend on the mass high-precision labelled 6-DOF pose data, which is difficult to obtain in practical scenarios. In this work, we propose a fast yet robust method for monocular endoscope motion estimation named Deep Motion Flow Estimation (DMFE). Specifically, we propose an innovative Key Points Encoder (KPE) supervised by Speeded-up Robust Features (SURF) flow to extract the salient features of endoscopic images. Aiming to ensure real-time capability, we propose a novel 3D motion transfer algorithm to reduce the computational complexity of the essential matrix. Extensive experiments on clinical and virtual colon datasets demonstrate the superiority of our method against the traditional methods, which can provide visual navigation assistance for doctors or robotic endoscopes in real-world scenarios.

Supported by National Natural Science Foundation of China (62073309), Guangdong Basic and Applied Basic Research Foundation (2022B1515020042) and Shenzhen Science and Technology Program (JCYJ20210324115606018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armin, M.A., Barnes, N., Alvarez, J., Li, H., Grimpen, F., Salvado, O.: Learning camera pose from optical colonoscopy frames through deep convolutional neural network (CNN). In: Cardoso, M.J., et al. (eds.) CARE/CLIP -2017. LNCS, vol. 10550, pp. 50–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67543-5_5

    Chapter  Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  3. Bell, C.S., Obstein, K.L., Valdastri, P.: Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes. Artif. Intell. Med. 59(3), 185–196 (2013)

    Article  Google Scholar 

  4. Chen, G., Pham, M.T., Redarce, T.: Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Robot. Auton. Syst. 57(6–7), 712–722 (2009)

    Article  Google Scholar 

  5. Chen, H., et al.: Participation and yield of a population-based colorectal cancer screening programme in China. Gut 68(8), 1450–1457 (2019). https://doi.org/10.1136/gutjnl-2018-317124

    Article  Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Mich. Math. J. 31(2), 231–240 (1984)

    Article  MathSciNet  Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Jiang, W., Zhou, Y., Wang, C., Peng, L., Yang, Y., Liu, H.: Navigation strategy for robotic soft endoscope intervention. Int. J. Med. Robot. Comput. Assist. Surg. 16(2), e2056 (2020)

    Google Scholar 

  10. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  11. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

    Article  Google Scholar 

  12. Ozyoruk, K.B., et al.: EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal. 71, 102058 (2021)

    Article  Google Scholar 

  13. Puerto-Souza, G.A., Staranowicz, A.N., Bell, C.S., Valdastri, P., Mariottini, G.-L.: A comparative study of ego-motion estimation algorithms for teleoperated robotic endoscopes. In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 64–76. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13410-9_7

    Chapter  Google Scholar 

  14. Recasens, D., Lamarca, J., Fácil, J.M., Montiel, J., Civera, J.: Endo-depth-and-motion: reconstruction and tracking in endoscopic videos using depth networks and photometric constraints. IEEE Robot. Autom. Lett. 6(4), 7225–7232 (2021)

    Article  Google Scholar 

  15. Sevilla-Lara, L., Sun, D., Learned-Miller, E.G., Black, M.J.: Optical flow estimation with channel constancy. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 423–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_28

    Chapter  Google Scholar 

  16. van der Stap, N., Slump, C.H., Broeders, I.A.M.J., van der Heijden, F.: Image-based navigation for a robotized flexible endoscope. In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 77–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13410-9_8

    Chapter  Google Scholar 

  17. Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.: Deep EndoVO: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 275, 1861–1870 (2018)

    Article  Google Scholar 

  18. Turan, M., et al.: Unsupervised odometry and depth learning for endoscopic capsule robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1801–1807. IEEE (2018)

    Google Scholar 

  19. Wang, K., Wang, Z., Zhou, Y., Yan, G.: Squirm robot with full bellow skin for colonoscopy. In: 2010 IEEE International Conference on Robotics and Biomimetics, pp. 53–57. IEEE (2010)

    Google Scholar 

  20. Xu, Y., Feng, L., Xia, Z., Xiong, J.: Camera pose estimation based on feature extraction and description for robotic gastrointestinal endoscopy. In: Liu, X.-J., Nie, Z., Yu, J., Xie, F., Song, R. (eds.) ICIRA 2021. LNCS (LNAI), vol. 13015, pp. 113–122. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89134-3_11

    Chapter  Google Scholar 

  21. Zhao, Y., Lou, Y.: Vision guided navigation based on dark regions and template matching for capsule endoscopies. In: 2013 IEEE International Conference on Information and Automation (ICIA), pp. 533–538. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, M., Feng, L., Xia, Z., Xiong, J. (2022). Deep Motion Flow Estimation for Monocular Endoscope. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics