Skip to main content

Applications of Kalman Filtering in Time Series Prediction

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

Abstract

With the development of big data techniques, various data are accumulated and used for time series prediction. As an optimal estimation algorithm, Kalman filtering (KF) is a useful method in realizing time series prediction for linear systems. In this paper, the characteristics of KF and its derivative algorithms (KFDAs) are analyzed and summarized. The existing application results about KFDAs are reviewed respectively in carrying on time series prediction of wind speed and finance. The available comparison results of KFDAs and neural network models are surveyed and discussed on conducting time series prediction, and it is revealed that KFDAs usually outperform neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jadid Abdulkadir, S., Yong, S.-P.: Unscented Kalman filter for noisy multivariate financial time-series data. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds.) MIWAI 2013. LNCS (LNAI), vol. 8271, pp. 87–96. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44949-9_9

    Chapter  Google Scholar 

  2. Waibel, A.: Modular construction of time-delay neural networks for speech recognition. Neural Comput. 1(1), 39–46 (1989)

    Article  Google Scholar 

  3. Öztürk, A.E., Erçelebi, E.: Real UAV-bird image classification using CNN with a synthetic dataset. Appl. Sci. 11(9), 3863:1–3863:17 (2021)

    Google Scholar 

  4. Xia, B., et al.: State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network. Energy 153, 694–705 (2018)

    Article  Google Scholar 

  5. Anderson, B.D.O., Moore, J.B., Eslami, M.: Optimal filtering. IEEE Trans. Syst. Man Cybern. 12(2), 235–236 (1982)

    Article  Google Scholar 

  6. Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. Roy. Soc. A 379(2194), 20200209 (2021)

    Article  MathSciNet  Google Scholar 

  7. Zuluaga, C.D., Álvarez, M.A., Giraldo, E.: Short-term wind speed prediction based on robust Kalman filtering: an experimental comparison. Appl. Energy 156, 321–330 (2015)

    Article  Google Scholar 

  8. Chen, Y., Zou, Y.: Examination on the relationship between OVX and crude oil price with Kalman filter. Procedia Comput. Sci. 55, 1359–1365 (2015)

    Article  Google Scholar 

  9. Chiu, C.-C., Su, C.-T.: A novel neural network model using Box-Jenkins technique and response surface methodology to predict unemployment rate. In: Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No. 98CH36294), pp. 74–80 (1998)

    Google Scholar 

  10. Fleischer, C., Waag, W., Bai, Z., Sauer, D.U.: Adaptive on-line state-of-available-power prediction of lithium-ion batteries. J. Power Electron. 13(4), 516–527 (2013)

    Article  Google Scholar 

  11. Hide, C., Moore, T., Smith, M.: Adaptive Kalman filtering for low-cost INS/GPS. J. Navig. 56(1), 143–152 (2003)

    Article  Google Scholar 

  12. Dini, D.H., Mandic, D.P., Julier, S.J.: A widely linear complex unscented Kalman filter. IEEE Sig. Process. Lett. 18(11), 623–626 (2011)

    Article  Google Scholar 

  13. Daniel, C., Basilio, L., Marco, G.: On the vehicle sideslip angle estimation: a literature review of methods, models, and innovations. Appl. Sci. 8(3), 355 (2018)

    Article  Google Scholar 

  14. Andre, D., Nuhic, A., Soczka-Guth, T., Sauer, D.U.: Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles. Eng. Appl. Artif. Intell. 26(3), 951–961 (2013)

    Article  Google Scholar 

  15. Simon, D.: Optimal State Estimation: Kalman, \(H_{\infty }\) and Nonlinear Approaches. Wiley, Hoboken (2006)

    Book  Google Scholar 

  16. Walker, D.M., Mees, A.I.: Noise reduction of chaotic systems by Kalman filtering and by shadowing. Int. J. Bifurcat. Chaos 7(03), 769–779 (1997)

    Article  MATH  Google Scholar 

  17. Cui, D., et al.: A novel intelligent method for the state of charge estimation of lithium-ion batteries using a discrete wavelet transform-based wavelet neural network. Energies 11(4), 995:1–995:18 (2018)

    Google Scholar 

  18. Luvizon, D.C., Picard, D., Tabia, H.: Multi-task deep learning for real-time 3D human pose estimation and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2752–2764 (2021)

    Google Scholar 

  19. Lerro, D., Bar-Shalom, Y.: Tracking with debiased consistent converted measurements versus EKF. IEEE Trans. Aerosp. Electron. Syst. 29(3), 1015–1022 (1993)

    Article  Google Scholar 

  20. Xu, D., Wang, Y., Jia, L., Qin, Y., Dong, H.: Real-time road traffic state prediction based on ARIMA and Kalman filter. Front. Inf. Technol. Electron. Eng. 18(2), 287–302 (2017). https://doi.org/10.1631/FITEE.1500381

    Article  Google Scholar 

  21. Cassola, F., Burlando, M.: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Appl. Energy 99, 154–166 (2012)

    Article  Google Scholar 

  22. Janacek, G.: Time series analysis forecasting and control. J. Time 31(4), 303 (2010)

    Google Scholar 

  23. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  24. Yu, H., Wu, Z., Chen, D., Ma, X.: Probabilistic prediction of bus headway using relevance vector machine regression. IEEE Trans. Intell. Transp. Syst. 18(7), 1772–1781 (2016)

    Article  Google Scholar 

  25. Sahoo, H.K., Dash, P.K., Rath, N.P.: NARX model based nonlinear dynamic system identification using low complexity neural networks and robust \(H_{\infty }\) filter. Appl. Soft Comput. 13(7), 3324–3334 (2013)

    Article  Google Scholar 

  26. Arasaratnam, I., Haykin, S.: Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, J., Li, X., Zhang, H., Ma, H.: Survey of nonlinear filters in the framework of recursive Bayesian estimation. Comput. Sci. 37(8), 21–25 (2010)

    Google Scholar 

  28. Liu, J.-E., An, F.-P.: Image classification algorithm based on deep learning-kernel function. Sci. Program. 2020, 7607612:1–7607612:14 (2020)

    Google Scholar 

  29. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2003). https://doi.org/10.1007/b97391

    Book  MATH  Google Scholar 

  30. Li, Y., Li, J.: Robust adaptive Kalman filtering for target tracking with unknown observation noise. In: 2012 24th Chinese Control and Decision Conference (CCDC), pp. 2075–2080 (2012)

    Google Scholar 

  31. Garnelo, M., et al.: Conditional neural processes. In: International Conference on Machine Learning, pp. 1704–1713 (2018)

    Google Scholar 

  32. Dixon, M.F.: Sequence classification of the limit order book using recurrent neural networks. J. Comput. Sci. 24, 277–286 (2018)

    Article  MathSciNet  Google Scholar 

  33. Goldhammer, M., Doll, K., Brunsmann, U., Gensler, A., Sick, B.: Pedestrian’s trajectory forecast in public traffic with artificial neural networks. In: 2014 22nd International Conference on Pattern Recognition, pp. 4110–4115 (2014)

    Google Scholar 

  34. Roozegar, M., Setiawan, Y.D., Angeles, J.: Design, modelling and estimation of a novel modular multi-speed transmission system for electric vehicles. Mechatronics 45, 119–129 (2017)

    Article  Google Scholar 

  35. Lara-Benítez, P., Carranza-García, M., Riquelme, J.C.: An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31(03), 2130001 (2021)

    Article  Google Scholar 

  36. Lim, P., Goh, C.K., Tan, K.C., Dutta, P.: Multimodal degradation prognostics based on switching Kalman filter ensemble. IEEE Trans. Neural Netw. Learn. Syst. 28(1), 136–148 (2015)

    Article  Google Scholar 

  37. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Al-Shrafany, D., Islam, T.: Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resour. Manag. 27(15), 5069–5087 (2013). https://doi.org/10.1007/s11269-013-0452-7

    Article  Google Scholar 

  38. Aggarwal, P., Bhatt, D., Devabhaktuni, V., Bhattacharya, P.: Dempster Shafer neural network algorithm for land vehicle navigation application. Inf. Sci. 253, 26–33 (2013)

    Article  Google Scholar 

  39. Qu, L., Lyu, J., Li, W., Ma, D., Fan, H.: Features injected recurrent neural networks for short-term traffic speed prediction. Neurocomputing 451, 290–304 (2021)

    Article  Google Scholar 

  40. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  41. Sharda, R., Patil, R.B.: Connectionist approach to time series prediction: an empirical test. J. Intell. Manuf. 3(5), 317–323 (1992). https://doi.org/10.1007/BF01577272

    Article  Google Scholar 

  42. Snyder, R.D., Ord, J.K., Koehler, A.B., McLaren, K.R., Beaumont, A.N.: Forecasting compositional time series: a state space approach. Int. J. Forecast. 33(2), 502–512 (2017)

    Article  Google Scholar 

  43. Dahlhaus, R., Wefelmeyer, W.: Asymptotically optimal estimation in misspecified time series models. Ann. Stat. 24(3), 952–974 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sharma, S., Elvira, V., Chouzenoux, E., Majumdar, A.: Recurrent dictionary learning for state-space models with an application in stock forecasting. Neurocomputing 450, 1–13 (2021)

    Article  Google Scholar 

  45. Sarkka, S., Vehtari, A., Lampinen, J.: Time series prediction by Kalman smoother with cross-validated noise density. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), pp. 1653–1657 (2004)

    Google Scholar 

  46. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. In: Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, pp. 182–193 (1997)

    Google Scholar 

  47. Zernetsch, S., Kohnen, S., Goldhammer, M., Doll, K., Sick, B.: Trajectory prediction of cyclists using a physical model and an artificial neural network. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 833–838 (2016)

    Google Scholar 

  48. Abidin, S.Z., Jalal, T.M.T., Razali, F.A., Hassim, N.H., Haron, N.F.: Comparison on estimating Malaysia gold price via nonlinear prediction method and Box-Jenkins model. In: AIP Conference Proceedings, vol. 1974, no. 1, p. 020057 (2018)

    Google Scholar 

  49. Tang, C., Peng, J., Deng, Y.: Application of a real-time tracking model based on Kalman filter in the prediction of stock price. Comput. Simul. 22(9), 218–221 (2005)

    Google Scholar 

  50. Kirubarajan, T., Bar-Shalom, Y.: Kalman filter versus IMM estimator: when do we need the latter. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1452–1457 (2003)

    Article  Google Scholar 

  51. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  52. Wu, X., Wang, Y.: Extended and unscented Kalman filtering based feedforward neural networks for time series prediction. Appl. Math. Model. 36(3), 1123–1131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Li, Y., Li, S., Ge, Y.: A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments. Neurocomputing 104, 170–179 (2013)

    Article  Google Scholar 

  54. Wang, Y., Smola, A., Maddix, D.C., Gasthaus, J., Januschowski, T.: Deep factors for forecasting. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 9–15 (2019)

    Google Scholar 

  55. Lin, Y., Yang, X., Zou, N., Jia, L.: Real-time bus arrival time prediction: case study for Jinan, China. J. Transp. Eng. 139(11), 1133–1140 (2013)

    Article  Google Scholar 

  56. Aydogmus, Z., Aydogmus, O.: A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation. Measurement 63, 152–158 (2015)

    Article  MATH  Google Scholar 

  57. Shen, Z., Zhang, Y., Lu, J., Xu, J., Xiao, G.: A novel time series forecasting model with deep learning. Neurocomputing 396, 302–313 (2020)

    Article  Google Scholar 

  58. Zhang, X., He, K., Bao, Y.: Error-feedback stochastic modeling strategy for time series forecasting with convolutional neural networks. Neurocomputing 459, 234–248 (2021)

    Article  Google Scholar 

  59. Tan, H., Shen, B., Peng, K., Liu, H.: Robust recursive filtering for uncertain stochastic systems with amplify-and-forward relays. Int. J. Syst. Sci. 51(7), 1188–1199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shen, Y., Wang, Z., Shen, B., Dong, H.: Outlier-resistant recursive filtering for multi-sensor multi-rate networked systems under weighted try-once-discard protocol. IEEE Trans. Cybern. 51(10), 4897–4908 (2021)

    Article  Google Scholar 

  61. Mao, J., Sun, Y., Yi, X., Liu, H., Ding, D.: Recursive filtering of networked nonlinear systems: a survey. Int. J. Syst. Sci. 52(6), 1110–1128 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants U21A2019, 61873058, 62073070, 62103096 and 11902072, the Heilongjiang Postdoctoral Foundation under Grant LBH-Z18045, the Hainan Province Science and Technology Special Fund of China under Grant ZDYF2022SHFZ105, the Fundamental Research Funds for Provincial Undergraduate Universities of Heilongjiang Province of China under Grant 2018QNL-56, the Technology Plan Project of Daqing City of China under Grants zd-2019-17 and zd-2020-26, and the Alexander von Humboldt Foundation of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X. et al. (2022). Applications of Kalman Filtering in Time Series Prediction. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics