Abstract
In this paper, we briefly investigate recently published literature on robot grasping with tactile information to understand the effect introduced by tactile modality and summarize the current issues of tactile sensing. Moreover, this paper consists of a review of slip detection during grasping, a review of grasp stability assessment to estimate the current contact state and a review of regrasp to select appropriate grasp adjustment action. Finally, we discuss the current limitations and deficiencies that prevent researchers from using tactile sensors, making it challenging to incorporate tactile modalities into robot perception and properly utilize tactile information to achieve effective and stable grasp performances. We consider that the pipeline consisting of grasp outcome prediction and grasp action adjustment based on machine learning is an appropriate scheme to make full use of tactile information and its potential in robot grasping tasks. More studies in this field are expected in the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wettels, N., Santos, V.J., Johansson, R.S., Loeb, G.E.: Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)
Tegin, J., Ekvall, S., Kragic, D., Wikander, J., Iliev, B.: Demonstration-based learning and control for automatic grasping. Intell. Serv. Robot. 2(1), 23–30 (2009)
Goldfeder, C., Allen, P.K., Lackner, C., Pelossof, R.: Grasp planning via decomposition trees. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, April 2007, pp. 4679–4684 (2007)
Faccio, M., Bottin, M., Rosati, G.: Collaborative and traditional robotic assembly: a comparison model. Int. J. Adv. Manuf. Technol. 102(5–8), 1355–1372 (2019). https://doi.org/10.1007/s00170-018-03247-z
Bekiroglu, Y., Huebner, K., Kragic, D.: Integrating grasp planning with online stability assessment using tactile sensing. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, May 2011, pp. 4750–4755 (2011)
Li, M., Bekiroglu, Y., Kragic, D., Billard, A.: Learning of grasp adaptation through experience and tactile sensing. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, September 2014, pp. 3339–3346 (2014)
Dang, H., Allen, P.K.: Learning grasp stability. In: 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, May 2012, pp. 2392–2397 (2012)
Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robot. 38(1), 65–88 (2014). https://doi.org/10.1007/s10514-014-9402-3
Hyttinen, E., Kragic, D., Detry, R.: Learning the tactile signatures of prototypical object parts for robust part-based grasping of novel objects. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, May 2015, pp. 4927–4932 (2015)
Dang, H., Weisz, J., Allen, P.K.: Blind grasping: stable robotic grasping using tactile feedback and hand kinematics. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, May 2011, pp. 5917–5922 (2011)
Laaksonen, J., Kyrki, V., Kragic, D.: Evaluation of feature representation and machine learning methods in grasp stability learning. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, December 2010, pp. 112–117 (2010)
Bierbaum, A., Rambow, M., Asfour, T., Dillmann, R.: Grasp affordances from multi-fingered tactile exploration using dynamic potential fields. In: 2009 9th IEEE-RAS International Conference on Humanoid Robots, Paris, December 2009, pp. 168–174 (2009)
Chebotar, Y., Kroemer, O., Peters, J.: Learning robot tactile sensing for object manipulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, September 2014, pp. 3368–3375 (2014)
van Hoof, H., Hermans, T., Neumann, G., Peters, J.: Learning robot in-hand manipulation with tactile features. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, South Korea, November 2015, pp. 121–127 (2015)
Hellman, R.B., Tekin, C., van der Schaar, M., Santos, V.J.: Functional contour-following via haptic perception and reinforcement learning. IEEE Trans. Haptics 11(1), 61–72 (2018)
Hasegawa, T., Honda, K.: Detection and measurement of fingertip slip in multi-fingered precision manipulation with rolling contact. In: Conference Documentation International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI 2001 (Cat. No.01TH8590), Baden-Baden, Germany, pp. 43–48 ( 2001)
Holweg, E.G.M., Hoeve, H., Jongkind, W., Marconi, L., Melchiorri, C., Bonivento, C.: Slip detection by tactile sensors: algorithms and experimental results. In: Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, vol. 4, pp. 3234–3239 (1996)
Tsujiuchi, N., et al.: Slip detection with distributed-type tactile sensor. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 2004, vol. 1, pp. 331–336 (2004)
Howe, R.D., Cutkosky, M.R.: Sensing skin acceleration for slip and texture perception. In: Proceedings, 1989 International Conference on Robotics and Automation, Scottsdale, AZ, USA, 1989, pp. 145–150 (1989)
Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Robot. 27(6), 1067–1079 (2011)
Yussof, H.: Sensorization of robotic hand using optical three-axis tactile sensor: evaluation with grasping and twisting motions. J. Comput. Sci. 6(8), 955–962 (2010)
Tremblay, M.R., Cutkosky, M.R.: Estimating friction using incipient slip sensing during a manipulation task. In: Proceedings IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 1993, pp. 429–434 (1993)
Kaboli, M., Yao, K., Cheng, G.: Tactile-based manipulation of deformable objects with dynamic center of mass. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, November 2016, pp. 752–757 (2016)
Melchiorri, C.: Slip detection and control using tactile and force sensors. IEEE/ASME Trans. Mechatron. 5(3), 235–243 (2000)
Gunji, D., et al.: Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor. In: 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 2008, pp. 2605–2610 (2008)
Jamali, N., Sammut, C.: Slip prediction using Hidden Markov models: multidimensional sensor data to symbolic temporal pattern learning. In: 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, May 2012, pp. 215–222 (2012)
Su, Z., et al.: Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, South Korea, November 2015, pp. 297–303 (2015)
Veiga, F., Peters, J., Hermans, T.: Grip stabilization of novel objects using slip prediction. IEEE Trans. Haptics 11(4), 531–542 (2018)
Veiga, F., van Hoof, H., Peters, J., Hermans, T.: Stabilizing novel objects by learning to predict tactile slip. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, September 2015, pp. 5065–5072 (2015)
Meier, M., Patzelt, F., Haschke, R., Ritter, H.J.: Tactile convolutional networks for online slip and rotation detection. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) Artificial Neural Networks and Machine Learning – ICANN 2016. LNCS, vol. 9887, pp. 12–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_2
ZapataImpata, B., Gil, P., Torres, F.: Learning spatio temporal tactile features with a ConvLSTM for the direction of slip detection. Sensors 19(3), 523 (2019)
Jiar, Y., Lee, K., Shi, G.: A high resolution and high compliance tactile sensing system for robotic manipulations. In: Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1993), Yokohama, Japan, 1993, vol. 2, pp. 1005–1009 (1993)
Ohka, M., Mitsuya, Y., Hattori, K., Higashioka, I.: Data conversion capability of optical tactile sensor featuring an array of pyramidal projections. In: 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems (Cat. No. 96TH8242), Washington, DC, USA, 1996, pp. 573–580 (1996)
Maekawa, H., Tanie, K., Komoriya, K.: A finger-shaped tactile sensor using an optical waveguide. In: Proceedings of IEEE Systems Man and Cybernetics Conference - SMC, Le Touquet, France, 1993, pp. 403–408 (1993)
Ferrier, N.J., Brockett, R.W.: Reconstructing the shape of a deformable membrane from image data. Int. J. Robot. Res. 19(9), 795–816 (2000)
Sato, K., Kamiyama, K., Nii, H., Kawakami, N., Tachi, S.: Measurement of force vector field of robotic finger using vision-based haptic sensor. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, September 2008, pp. 488–493 (2008)
Nagata, K., Ooki, M., Kakikur, M.: Feature detection with an image based compliant tactile sensor. In: Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No. 99CH36289), Kyongju, South Korea, 1999, vol. 2, pp. 838–843 (1999)
Kamiyama, K., Vlack, K., Mizota, T., Kajimoto, H., Kawakami, K., Tachi, S.: Vision-based sensor for real-time measuring of surface traction fields. IEEE Comput. Grap. Appl. 25(1), 68–75 (2005)
Yuan, W., Li, R., Srinivasan, M.A., Adelson, E.H.: Measurement of shear and slip with a GelSight tactile sensor. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, May 2015, pp. 304–311 (2015)
Dong, S., Yuan, W., Adelson, E.H.: Improved GelSight tactile sensor for measuring geometry and slip. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, September 2017, pp. 137–144 (2017)
Li, J., Dong, S., Adelson, E.: Slip detection with combined tactile and visual information. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, May 2018, pp. 7772–7777 (2018)
Bekiroglu, Y., Kragic, D., Kyrki, V.: Learning grasp stability based on tactile data and HMMs. In: 19th International Symposium in Robot and Human Interactive Communication, Viareggio, Italy, September 2010, pp. 132–137 (2010)
Zapata-Impata, B.S., Gil, P., Torres, F.: Non-Matrix Tactile Sensors: How Can Be Exploited Their Local Connectivity For Predicting Grasp Stability? (2018)
Garcia-Garcia, A., Zapata-Impata, B.S., Orts-Escolano, S., Gil, P., Garcia-Rodriguez, J.: TactileGCN: A Graph Convolutional Network for Predicting Grasp Stability with Tactile Sensors (2019)
Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)
Gao, Y., Hendricks, L.A., Kuchenbecker, K.J., Darrell, T.: Deep Learning for Tactile Understanding From Visual and Haptic Data (2015)
Koenig, A, Liu, Z., Janson, L., Howe, R.: Tactile Grasp Refinement using Deep Reinforcement Learning and Analytic Grasp Stability Metrics. arXiv:2109.11234 [cs, eess], September 2021, Accessed 27 October 2021. http://arxiv.org/abs/2109.11234
Miller, A.T., Allen, P.K.: Examples of 3D grasp quality computations. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 1999, vol. 2, pp. 1240–1246 (1999)
Zheng, Y., Qian, W.-H.: Improving grasp quality evaluation. Robot. Auton. Syst. 57(6–7), 665–673 (2009)
Kwiatkowski, J., Cockburn, D., Duchaine, V.: Grasp stability assessment through the fusion of proprioception and tactile signals using convolutional neural networks. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, September 2017, pp. 286–292 (2017)
Hyttinen, E., Kragic, D., Detry, R.: Estimating tactile data for adaptive grasping of novel objects. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, November 2017, pp. 643–648 (2017)
Dang, H., Allen, P.K.: Stable grasping under pose uncertainty using tactile feedback. Auton. Robot. 36(4), 309–330 (2013). https://doi.org/10.1007/s10514-013-9355-y
Bekiroglu, Y., Song, D., Wang, L., Kragic, D.: A probabilistic framework for task-oriented grasp stability assessment. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 2013, pp. 3040–3047 (2013)
Cui, S., Wang, R., Wei, J, Li, F., Wang, S.: Grasp state assessment of deformable objects using visual-tactile fusion perception. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, May 2020, pp. 538–544 (2020)
Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)
Yan, G., Schmitz, A., Funabashi, S., Somlor, S, Tomo, T.P., Sugano, S.: A robotic grasping state perception framework with multi-phase tactile information and ensemble learning. IEEE Robot. Autom. Lett., p. 1 (2022)
Bekiroglu, Y., Laaksonen, J., Jorgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Robot. 27(3), 616–629 (2011)
Cockbum, D., Roberge, J.-P., Le, T.-H.-L., Maslyczyk, A., Duchaine, V.: Grasp stability assessment through unsupervised feature learning of tactile images. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore, May 2017, pp. 2238–2244 (2017)
R. Calandra et al.: The Feeling of Success: Does Touch Sensing Help Predict Grasp Outcomes?,” arXiv:1710.05512 [cs, stat], October 2017, Accessed 08 Mar 2022. http://arxiv.org/abs/1710.05512
Cui, S., Wang, R., Wei, J., Hu, J., Wang, S.: Self-attention based visual-tactile fusion learning for predicting grasp outcomes. IEEE Robot. Autom. Lett. 5(4), 5827–5834 (2020)
Steffen, J., Haschke, R., Ritter, H.: Experience-based and tactile-driven dynamic grasp control. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, October 2007, pp. 2938–2943 (2007)
Kim, J., Iwamoto, K., Kuffner, J.J., Ota, Y., Pollard, N.S.: Physically-based grasp quality evaluation under uncertainty. In: 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, May 2012, pp. 3258–3263 (2012)
Felip, J., Morales, A.: Robust sensor-based grasp primitive for a three-finger robot hand. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 1811–1816, October 2009
Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G.S., Schaal, S.: Generalizing regrasping with supervised policy learning. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds.) 2016 International Symposium on Experimental Robotics. SPAR, vol. 1, pp. 622–632. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50115-4_54
Dang, H., Allen, P.K.: Grasp adjustment on novel objects using tactile experience from similar local geometry. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 4007–4012, November 2013
Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G.S., Schaal, S.: Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, pp. 1960–1966, October 2016
Hogan, F.R., Bauza, M., Canal, O., Donlon, E., Rodriguez, A.: Tactile regrasp: grasp adjustments via simulated tactile transformations. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, pp. 2963–2970, October 2018
Calandra, R., et al.: More than a feeling: learning to grasp and regrasp using vision and touch. IEEE Robot. Autom. Lett. 3(4), 3300–3307 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Z., Zhang, Z., Xie, K., Zhu, X., Cao, Q. (2022). A Brief Review Focused on Tactile Sensing for Stable Robot Grasping Manipulation. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-031-13835-5_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13834-8
Online ISBN: 978-3-031-13835-5
eBook Packages: Computer ScienceComputer Science (R0)