Skip to main content

Multiple Object Tracking by Joint Head, Body Detection and Re-Identification

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13458))

Included in the following conference series:

  • 3073 Accesses

Abstract

Multi-object tracking (MOT) is an important problem in computer vision which has a wide range of applications. Formulating MOT as multi-task learning of object detection and re-Identification (re-ID) in a single network is appealing since it achieves real-time but effective inference on detection and tracking. However, in crowd scenes, the existing MOT methods usually fail to locate occluded objects, which also results in bad effects on the re-ID task. To solve people tracking in crowd scenes, we present a model called HBR (Head-Body-ReID Joint Tracking) to jointly formulates head detection, body detection and re-ID tasks into an uniform framework. Human heads are hardly affected by occlusions in crowd scenes, and they can provide informative clues for whole body detection. The experimental results on MOT17 and MOT20 show that our proposed model performs better than the state-of-the-arts.

Supported by Peng Cheng Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basar, T.: A new approach to linear filtering and prediction problems, pp. 167–179 (2001)

    Google Scholar 

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468 (2016)

    Google Scholar 

  3. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017)

    Google Scholar 

  4. Cao, J., Weng, X., Khirodkar, R., Pang, J., Kitani, K.: Observation-centric SORT: rethinking SORT for robust multi-object tracking. arXiv preprint arXiv:2203.14360 (2022)

  5. Fang, K., Xiang, Y., Li, X., Savarese, S.: Recurrent autoregressive networks for online multi-object tracking. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 466–475 (2018)

    Google Scholar 

  6. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  7. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  8. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  9. Liang, C., Zhang, Z., Zhou, X., Li, B., Zhu, S., Hu, W.: Rethinking the competition between detection and ReID in multiobject tracking. IEEE Trans. Image Process. 31, 3182–3196 (2022)

    Article  Google Scholar 

  10. Mahmoudi, N., Ahadi, S.M., Rahmati, M.: Multi-target tracking using CNN-based features: CNNMTT. Multimed. Tools Appl. 78(6), 7077–7096 (2018). https://doi.org/10.1007/s11042-018-6467-6

    Article  Google Scholar 

  11. Pang, B., Li, Y., Zhang, Y., Li, M., Lu, C.: TubeTK: adopting tubes to track multi-object in a one-step training model. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6307–6317 (2020)

    Google Scholar 

  12. Peng, J., et al.: Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_9

    Chapter  Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 1137–1149 (2017)

    Google Scholar 

  14. Sun, P., et al.: TransTrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)

  15. Sun, Z., Peng, D., Cai, Z., Chen, Z., Jin, L.: Scale mapping and dynamic re-detecting in dense head detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1902–1906 (2018)

    Google Scholar 

  16. Sundararaman, R., De Almeida Braga, C., Marchand, E., Pettre, J.: Tracking pedestrian heads in dense crowd. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3865–3875 (2021)

    Google Scholar 

  17. Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7934–7943 (2019)

    Google Scholar 

  18. Wang, Y., Kitani, K., Weng, X.: Joint object detection and multi-object tracking with graph neural networks. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13708–13715. IEEE (2021)

    Google Scholar 

  19. Wang, Z., Zheng, L., Liu, Y., Li, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7

    Chapter  Google Scholar 

  20. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649 (2017)

    Google Scholar 

  21. Wu, J., Cao, J., Song, L., Wang, Y., Yang, M., Yuan, J.: Track to detect and segment: an online multi-object tracker. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12347–12356 (2021)

    Google Scholar 

  22. Yang, F., Choi, W., Lin, Y.: Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2129–2137 (2016)

    Google Scholar 

  23. Yu, E., Li, Z., Han, S., Wang, H.: RelationTrack: relation-aware multiple object tracking with decoupled representation. CoRR (2021)

    Google Scholar 

  24. Yu, F., Li, W., Li, Q., Liu, Yu., Shi, X., Yan, J.: POI: multiple object tracking with high performance detection and appearance feature. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 36–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_3

    Chapter  Google Scholar 

  25. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129(11), 3069–3087 (2021). https://doi.org/10.1007/s11263-021-01513-4

    Article  Google Scholar 

  26. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

    Chapter  Google Scholar 

  27. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  28. Zhou, Z., Xing, J., Zhang, M., Hu, W.: Online multi-target tracking with tensor-based high-order graph matching. In: 2018 24th International Conference on Pattern Recognition (ICPR) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z. et al. (2022). Multiple Object Tracking by Joint Head, Body Detection and Re-Identification. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics